Group & Phase Velocities (2A)

• 1-D Group & Phase Velocities

Copyright (c) 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 7/23/12

Wave Equation

Wavelength, Frequency

Wave Number, Angular Frequency

Young Won Lim 7/23/12

Phase Velocity (1)

wave number
$$k = \frac{2\pi}{\lambda}$$
angular frequency $\omega = \frac{2\pi}{T}$ radians per unit distanceradians per unit timePhase Velocity $v_p = \frac{\lambda}{T} = \frac{2\pi/k}{2\pi/\omega} = \frac{\omega}{k}$ $v_p = \frac{\omega}{k}$

Phase Velocity (2)

Phase Velocity
$$v_p = \frac{\omega}{k}$$

 $A\cos(kx - \omega t)$
Given time t, ωt oscillations
Corresponding distance x, \longrightarrow *the same oscillations*
 $kx = \omega t$

$$v_p = \frac{x}{t} = \frac{\omega}{k}$$

8

Phase Velocity, Group Velocity

Phase Velocity
$$v_p = \frac{\omega}{k}$$

Group Velocity
$$v_g = \frac{\partial \omega}{\partial k}$$

Group Velocity Explanation (1)

Group Velocity Explanation (2)

Envelope

Group Velocity Explanation (3)

Group Velocity & Fourier Transform (1)

A periodic function

$$f(\theta) = \sum_{k} a_{k} \sin(k\theta) + b_{k} \cos(k\theta)$$
$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(\theta) \sin(k\theta) d\theta \qquad b_{k} = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(\theta) \cos(k\theta) d\theta$$

A non-periodic function

$$f(x) = \int_{-\infty}^{+\infty} F(k) e^{jkx} dk$$
$$F(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-jkx} dx$$

Group Velocity & Fourier Transform (2)

A non-periodic function

$$f(x) = \int_{-\infty}^{+\infty} F(k) e^{jkx} dk \qquad F(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-jkx} dx$$

Infinite number of sine waves Well-defined wavelength Well-defined k (wave number)

Lots of sine waves of diff wavelengths Short wave packet

A long wave packet

A small spread in k Sharp peak

Group Velocity & Fourier Transform (3)

A non-periodic function

$$f(x) = \int_{-\infty}^{+\infty} F(k) e^{jkx} dk$$

$$F(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-jkx} dx$$

A long wave packet

A small spread in kSharp peak at k_0

At some initial time $t = t_0$ $f(x,0) = \int_{-\infty}^{+\infty} F(x)e^{jkx}dk$ After time t $+\infty$

$$f(x,t) = \int_{-\infty}^{\infty} F(x) e^{j(kx - \omega(k)t)} dk$$

$\omega(k)$ different wavelength components have different frequencies

Taylor expansion to 1st order

$$\omega(k) = \omega_0 + \frac{d\omega}{dk}(k - k_0)$$
$$f(x,t)$$
$$= \int_{-\infty}^{+\infty} F(x)e^{j(kx - (\omega_0 + \frac{d\omega}{dk}(k - k_0))t)}dk$$

Group Velocity & Fourier Transform (3)

A long wave packet	A small spread in k Sharp peak at k_0
After time t $f(x,t) = \int_{-\infty}^{+\infty} F(x) e^{j(kx - \omega(k)t)} dk$	$f(x,t) = \int_{-\infty}^{+\infty} F(k) e^{j(kx - (\omega_0 + \frac{d\omega}{dk}(k - k_0))t)} dk$
Taylor expansion to 1 st order	$= \int_{-\infty}^{+\infty} F(k) e^{j(k_0 x + k x - k_0 x - (\omega_0 + \frac{d \omega}{d k}(k - k_0))t)} dk$ = $e^{j(k_0 x - \omega_0 t)} \int_{-\infty}^{+\infty} F(k) e^{j((k - k_0) x - \frac{d \omega}{d k}(k - k_0)t)} dk$
$\omega(k) = \omega_0 + \frac{d\omega}{dk}(k - k_0)$	$= e^{j(k_0x - \omega_0t)} \int_{-\infty}^{+\infty} F(k) e^{j(k - k_0)\left(x - \frac{d\omega}{dk}t\right)} dk$
Group Velocity $v_g = \frac{d \omega}{d k}$	$\left(\boldsymbol{x} - \frac{d\omega}{dk}\boldsymbol{t}\right)$

Dispersion

Phase Velocity
$$v_p = \frac{\omega}{k}$$

Dispersion : The angular frequency depends on the wave number (or wavelength) $\omega(k)$

Group Velocity
$$v_g = \frac{\partial \omega}{\partial k} = \frac{\partial \omega(k)}{\partial k}$$

$$\omega(k) = kc$$

$$\omega(k) = \frac{\hbar k^2}{2m}$$
$$\omega(k) = 2\sqrt{\frac{\gamma}{M}} \left| \sin \frac{ka}{2} \right|$$

Free, non-relativistic quantum mechanical particle of mass m

Acoustic branch of vibrations in a crystal

Linear Dispersion

$$\omega(k) = kc$$
 Light in vacuum

Quadratic Dispersion

$$\omega(k) = \frac{hk^2}{2m}$$

Free, non-relativistic quantum mechanical particle of mass m

Acoustic Phonon Dispersion

$$\omega(k) = 2\sqrt{\frac{\gamma}{M}} \left| \sin \frac{k a}{2} \right|$$

Acoustic branch of vibrations in a crystal

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] http://www.mathpages.com/, Phase, Group, and Signal Velocity
- [4] R. Barlow, www.hep.man.ac.uk/u/roger/PHYS10302/lecture15.pdf
- [5] P. Hofmann, www.philiphofmann.net/book_material/notes/groupphasevelocity.pdf