Propagating Wave (1B)

• 3-D Propagating Wave

Copyright (c) 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 7/30/12

Maxwell Equations

$$\nabla \times E = -\frac{\partial \mu H}{\partial t} \qquad \nabla \cdot (\epsilon E) = 0$$

$$\nabla \times H = +\frac{\partial \epsilon E}{\partial t} \qquad \nabla \cdot (\mu H) = 0$$

$$\nabla = \frac{\partial}{\partial x} i_x + \frac{\partial}{\partial y} i_y + \frac{\partial}{\partial z} i_z \qquad \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla^2 E = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \qquad \underline{s(x,t)} \qquad \underline{\partial^2 s}_{\partial x^2} + \frac{\partial^2 s}{\partial y^2} + \frac{\partial^2 s}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2}$$

Wave Equation in Cartesian Coordinates

Assume a separable solution

$$s(x, y, z, t) = A e^{j(\omega t - k_x x - k_y y - k_z z)}$$
$$= A e^{-jk_x x} e^{-jk_y y} e^{-jk_z z} e^{j\omega t}$$
$$= f(x)g(x)h(x)p(t)$$

4

Monochrome Plane Wave (1)

$$s(x, y, z, t) = Ae^{j(\omega t - k_x x - k_y y - k_z z)}$$
Fixed point $(x, y, z) = (0, 0, 0)$

$$s(0, 0, 0, t) = Ae^{j\omega t} = A\cos\omega t + A\sin\omega t$$
Monochrome Wave
$$s(x, y, z, t) = Ae^{j(\omega t - k_x x - k_y y - k_z z)}$$
Fixed time $t = t_0$

$$s(x, y, z, t_0) = Ae^{j(\omega t_0 - [k_x x + k_y y + k_z z])}$$
points (x, y, z) such that $k_x x + k_y y + k_z z = C$
Plane Wave
planes of constant phase
$$s(x, y, z, t_0) = Ae^{j(\omega t_0 - k_x x - k_y y - k_z z)}$$
has the same value $Ae^{j(\omega t_0 - C)}$

Monochrome Plane Wave (2)

$$s(x, y, z, t) = Ae^{j(\omega t - k_x x - k_y y - k_z z)} \qquad \Rightarrow \qquad s(x, t) = Ae^{j(\omega t - k \cdot x)}$$
planes of constant phase $\rightarrow k \cdot x = C$
If truly a propagating wave
planes of constant phase move by δx
as time advances by δt

$$\Rightarrow s(x + \delta x, t + \delta t) = s(x, t)$$

$$\Rightarrow \omega(t + \delta t) - k \cdot (x + \delta x) = \omega t - k \cdot x$$

$$\omega \delta t - k \cdot \delta x = 0$$

$$s(x + \delta x, t + \delta t) = s(x, t)$$

Monochrome Plane Wave (3)

constant phase		$\boldsymbol{k}\cdot\boldsymbol{x} = \boldsymbol{C}$
planes of constant phase	\rightarrow	perpendicular to k

7

Monochrome Plane Wave (4)

 δx in the same direction k : minimum $|\delta x|$

The direction of propagation
$$\zeta_0 = \frac{k}{|k|}$$

If in the same direction $k \cdot \delta x = |k| |\delta x|$

Propagating)
Wave (1B)	

Monochrome Plane Wave (5)

constant phase	-	$\boldsymbol{k}\cdot\boldsymbol{x} = C$
planes of constant phase	-	perpendicular to k
$s(\mathbf{x}+\delta\mathbf{x},t+\delta t) = s(\mathbf{x},t)$	-	$\omega \delta t - k \cdot \delta x = 0$

δx in the same direction k : minimum $ \delta x $	$\omega \delta t = \mathbf{k} \delta \mathbf{x}$
The direction of propagation $\zeta_0 = \frac{k}{ k }$	$\frac{\omega}{\omega} = \frac{ \delta x }{ \delta x }$
If in the same direction $\mathbf{k} \cdot \delta \mathbf{x} = \mathbf{k} \delta \mathbf{x} $	$ \mathbf{k} = \delta t$

$$k_x^2 + k_y^2 + k_z^2 = \frac{\omega^2}{c^2} \qquad \Longrightarrow \qquad k^2 = \frac{\omega^2}{c^2} \qquad \Longrightarrow \qquad c = \frac{\omega}{k} \qquad \Longrightarrow \qquad c = \frac{|\delta x|}{\delta t}$$

~

The speed of propagation of the plane wave

Wave Number, Angular Frequency

3-dimensional space

$$\omega \, \delta t - k \cdot \delta x = 0$$
period wavelength

 $\delta t \rightarrow T = \frac{2\pi}{\omega} \qquad \delta x \rightarrow \lambda = \frac{2\pi}{k}$

wave number vector spatial frequency variable

Its magnitude represents the <u>number of</u> <u>cycles (in rad) per meter of length</u> that the monochromatic <u>plane</u> wave exhibits *in the direction of propagation*.

Wavelength, Frequency

$$s(\mathbf{x}, \mathbf{t}) = A e^{j(\omega \mathbf{t} - \mathbf{k} \cdot \mathbf{x})}$$

position vector

$$s(\mathbf{x}, \mathbf{t}) = A e^{j(\omega(\mathbf{t} - \alpha \cdot \mathbf{x}))}$$

$$\begin{aligned} (\omega t - k \cdot x) &= \omega \left(t - \left(\begin{matrix} k \\ \omega \end{matrix} \right) \cdot x \right) \\ \text{temporal 3-d slowness vector frequency frequency } \alpha \\ &= \left[\omega (t - \alpha \cdot x) \right] \end{aligned}$$

Function of a single variable

$$s(\mathbf{u}) = A e^{j(\omega \mathbf{u})}$$

$$s(t - \alpha \cdot \mathbf{x}) = A e^{j(\omega(t - \alpha \cdot \mathbf{x}))}$$
$$= s(\mathbf{x}, t)$$

Slowness Vector

$$\alpha = \frac{k}{\omega}$$

Speed Vector (Phase Velocity)

$$v_p = \frac{\omega}{k}$$

Summary

Propagating Plane Wave	$s(t-\boldsymbol{\alpha}\cdot\boldsymbol{x}) = A$	$e^{j(\omega(t-\alpha\cdot x))} = s(x, t)$
Propagating Sinusoidal Plane Wave	$\sin(\omega(t-\boldsymbol{\alpha}\cdot\boldsymbol{x}))$	$= \sin(\omega t - \mathbf{k} \cdot \mathbf{x})$
Slowness Vector	$\alpha = \frac{k}{\omega}$	$ \alpha = \frac{1}{c}$
Wavenumber Vector	$k = \omega \alpha$	$ \boldsymbol{k} = \frac{2\pi}{\lambda}$
Frequency and wavelength	$ \alpha = \frac{ k }{\omega}$	$c = \frac{1}{ \boldsymbol{\alpha} } = \frac{\omega}{ \boldsymbol{k} }$
		$c = \frac{\omega \cdot \lambda}{2 \pi}$

Maxwell Equations

$$A(t, t) = A_0 \cos(kx - \omega t)$$

Maxwell Equations

$$A(t, t) = A_0 \cos(kx - \omega t)$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] http://www.mathpages.com/, Phase, Group, and Signal Velocity
- [4] R. Barlow, www.hep.man.ac.uk/u/roger/PHYS10302/lecture15.pdf
- [5] P. Hofmann, www.philiphofmann.net/book_material/notes/groupphasevelocity.pdf
- [6] D.H. Johnson, et. al., Arrary Signal Processing: concepts and techniques