
Young Won Lim
05/17/2013

Design Levels of Abstraction : Overview

● Gate-level Modeling
● Dataflow Modeling
● Behavioral Modeling
● Structural Modeling

Young Won Lim
05/17/2013

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Timing Model (1A) 3 Young Won Lim
05/17/2013

2-to-1 Multiplexer Example

i0

i1

s

z
i0

i1

s
sb

a0

a1

z

0

1

Timing Model (1A) 4 Young Won Lim
05/17/2013

Gate-level Modeling

i0

i1
s

sb

a0

a1

z

not U0 (sb, s);

and U1 (a0, i0, sb),

U2 (a1, i1, s);

or U3 (z, a0, a1);

U0

U1

U2

U3

wire sb;

wire a0;

wire a1;

wire z;

wireValues are
continuously driven by
an output of a device

always active driving a 0, 1, x, z

Timing Model (1A) 5 Young Won Lim
05/17/2013

Dataflow Modeling

assign sb = ~s;

assign a0 = i0 & sb;

assign a1 = i1 & s;

assign z = a0 | a1;

not U0 (sb, s);

and U1 (a0, i0, sb),

U2 (a1, i1, s);

or U3 (z, a0, a1);

wire sb;

wire a0;

wire a1;

wire z;

Continuous Assignment

i0

i1
s

sb

a0

a1

zU0

U2

U3

&

&

~ |

Whenever any
input changes, its
output is evaluated
and updated

Timing Model (1A) 6 Young Won Lim
05/17/2013

Continuous Assignment

Continuous Assignment

i0 &
i1

zi0
i1

z

i0

i1

z

i0

i1

z

The output z always has the value
of i0 and i1

The output z always has the value
of i0 and i1

Whenever inputs change, evaluate
and propagate its output

assign z = i0 & i1;

Timing Model (1A) 7 Young Won Lim
05/17/2013

Behavioral Modeling – Combinational

assign sb = ~s;

assign a0 = i0 & sb;

assign a1 = i1 & s;

assign z = a0 | a1;

reg sb;

reg a0;

reg a1;

reg z;

Procedural Assignment

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

i0

i1
s

sb

a0

a1

z

not a flipflopa value holder
needs no driver

reg

Dataflow Modeling Behavioral Modeling

Timing Model (1A) 8 Young Won Lim
05/17/2013

Procedural Assignment

Procedural Assignment

not a flipflopa value holder
needs no driver

reg

Whenever inputs change,
evaluate and propagate its output

Continuous Assignment

i0 &
i1

zi0
i1

z

within always, initial

combined with if () then – else –

assign z = i0 & i1;

always @(i0 or sb)
z = i0 & i1;

wire z;

reg z;

Timing Model (1A) 9 Young Won Lim
05/17/2013

Simulation

i0

i1
s

sb

a0

a1

z

assign sb = ~s;

assign a0 = i0 & sb;

assign a1 = i1 & s;

assign z = a0 | a1;

U0

U1

U2

U3

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

whenever s changes
sb = ~s;

whenever i0 or sb change
a0 = i0 & sb;

whenever i1 or s change
a1 = i1 & s;

whenever a0 or a1 change
z = a0 | a1;

Dataflow Modeling Behavioral Modeling

Timing Model (1A) 10 Young Won Lim
05/17/2013

When i0 changes

i0

i1
s

sb

a0

a1

zU0

U1

U2

U3

a0 = i0 & sb;

z = a0 | a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

Timing Model (1A) 11 Young Won Lim
05/17/2013

When s changes

i0

i1
s

sb

a0

a1

zU0

U1

U2

U3

sb = ~s;

a0 = i0 & sb;

a1 = i1 & s;

z = a0 | a1; z = a0 | a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

Timing Model (1A) 12 Young Won Lim
05/17/2013

Behavioral Modeling – Sequential

responds to any
input changes
at any time

clk

d

these input changes does
not affect its output

D Q

clk

d q

Only sensitive to a
subset of of their inputs
– sensitivity list

the two inputs (clk, d) q

always @(posedge clk)
 q = d;

always @ (posedge clk)

q = d; q = d;

Timing Model (1A) 13 Young Won Lim
05/17/2013

Behavioral Modeling – Initialization

clk

initial
 begin

clk = 0;
d = 1;
q = 0;

 end

d

initial

clk = 0;
d = 1;
q = 0;

q

Timing Model (1A) 14 Young Won Lim
05/17/2013

Parallel Processes

i0

i1
s

sb

a0

a1

zU0

U1

U2

U3

always @(s)
sb = ~s;

always @(i0 or sb)
a0 = i0 & sb;

always @(i1 or s)
a1 = i1 & s;

always @(a0 or a1)
z = a0 | a1;

always @(posedge clk)
 q = d;

Five
Parallel
Processes

D Q

clk

q

Timing Model (1A) 15 Young Won Lim
05/17/2013

Structural Modeling

regreg

netnetnet

net

net

net

wire
tri

wand
wor
triand
trior

tri0
tri1

supply0
supply1

trireg

Timing Model (1A) 16 Young Won Lim
05/17/2013

Sequential Assignment (2)

Young Won Lim
05/17/2013

References

[1] http://en.wikipedia.org/
[2] T.R. Padmanabhan, B.T. Sundari, “Design Through Verilog HDL
[3] D.E. Thomas, P.R. Moorby, “The Verilog Hardware Description Language”, 3rd ed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

