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Design Levels of Abstraction : Overview

● Gate-level Modeling
● Dataflow Modeling
● Behavioral Modeling
● Structural Modeling 
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2-to-1 Multiplexer Example
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Gate-level Modeling
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not U0 (sb, s);

and U1 (a0, i0, sb),

U2 (a1, i1, s);

or U3 (z, a0, a1);

U0

U1

U2

U3

wire sb;

wire a0;

wire a1;

wire z;

wireValues are 
continuously driven by 
an output of a device

always active driving a 0, 1, x, z
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Dataflow Modeling

assign sb = ~s;

assign a0 =  i0 & sb;

assign a1 =  i1 & s;

assign z   =  a0 | a1;

not U0 (sb, s);

and U1 (a0, i0, sb),

U2 (a1, i1, s);

or U3 (z, a0, a1);

wire sb;

wire a0;

wire a1;

wire z;

Continuous Assignment
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Whenever any 
input changes, its 
output is evaluated 
and updated
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Continuous Assignment

Continuous Assignment

i0 &
i1

zi0
i1

z
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z
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The output z always has the value 
of i0 and i1

The output z always has the value 
of i0 and i1

Whenever inputs change, evaluate 
and propagate its output 

assign z =  i0 & i1;
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Behavioral Modeling – Combinational 

assign sb = ~s;

assign a0 =  i0 & sb;

assign a1 =  i1 & s;

assign z   =  a0 | a1;

reg sb;

reg a0;

reg a1;

reg z;

Procedural Assignment

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;

i0

i1
s

sb

a0

a1

z

not a flipflopa value holder
needs no driver 

reg

Dataflow Modeling Behavioral  Modeling
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Procedural Assignment

Procedural Assignment

not a flipflopa value holder
needs no driver 

reg

Whenever inputs change, 
evaluate and propagate its output 

Continuous Assignment

i0 &
i1

zi0
i1

z

within always, initial 

combined with if ( ) then – else – 

assign z =  i0 & i1;

always @(i0 or sb)
z =  i0 & i1;

wire z;

reg z;
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Simulation 
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assign sb = ~s;

assign a0 =  i0 & sb;

assign a1 =  i1 & s;

assign z   =  a0 | a1;

U0

U1

U2

U3

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;

whenever s changes
sb = ~s;

whenever i0 or sb change
a0 =  i0 & sb;

whenever i1 or s change
a1 =  i1 & s;

whenever a0 or a1 change
z =  a0 | a1;

Dataflow Modeling Behavioral  Modeling
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When i0 changes
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a0 =  i0 & sb;

z =  a0 | a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;
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When s changes
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sb = ~s;

a0 =  i0 & sb;

a1 =  i1 & s;

z =  a0 | a1; z =  a0 | a1;

always @(i0 or sb)

always @(a0 or a1)

always @(s)

always @(i1 or s)

always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;
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Behavioral Modeling – Sequential 

responds to any 
input changes
at any time

clk

d

these input changes does 
not affect its output

D      Q 

clk

d q

Only sensitive to a 
subset of of their inputs 
– sensitivity list 

the two inputs (clk, d) q

always @(posedge clk)
  q = d;

always @ (posedge clk)

q = d; q = d;
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Behavioral Modeling – Initialization 

clk

initial
  begin

clk = 0;
d = 1;
q = 0;

  end

d

initial

clk = 0;
d = 1;
q = 0;

q
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Parallel Processes
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always @(s)
sb = ~s;

always @(i0 or sb)
a0 =  i0 & sb;

always @(i1 or s)
a1 =  i1 & s;

always @(a0 or a1)
z =  a0 | a1;

always @(posedge clk)
  q = d;

Five 
Parallel 
Processes

D      Q 

clk

q
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Structural Modeling 

regreg

netnetnet

net

net

net

wire
tri 

wand
wor
triand
trior

tri0
tri1

supply0
supply1

trireg
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Sequential Assignment (2)
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