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solution space

Invertible  A x = A−10 = 0 only trivial solution

Non-invertible  A
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Solution Space of Ax=b (1)

0⋅x1 + 0⋅x2 + 0⋅x3 = 1

0 = 1
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x2 = s x3 = t

x1 = 4 + 5 s − 1 t

x2 = s

x3 = t

1

0

0

0

1

0

0

2

0

0

0

1

1

0

0

0

1

0

3

-4

0

-1

2

0

1

0

0

-5

0

0

1

0

0

4

0

0



Fundamental Matrix 
Spaces (4A) 9 Young Won Lim

11/24/12

Solution Space of Ax=b (2)
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Solution Space of Ax=b (3)
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Linear System & Inner Product (1)

a11x1 + a12x2 + ⋯ + a1nxn = 0

Linear Equations

a1x1 + a2x2 + ⋯ + anxn = 0Corresponding Homogeneous Equation

a = (a1 , a2 , ⋯ , an)

x = (x1 , x2 , ⋯ , xn)

a⋅x = b

a⋅x = 0
normal vector

each solution vector      of a homogeneous equationx

orthogonal to the coefficient vector a

Homogeneous Linear System

a21x1 + a22x2 + ⋯ + a2nxn = 0

am1x1 + am2x2 + ⋯ + amnxn = 0

⋯ ⋯ ⋯ ⋯ ⋯

r1⋅x = 0

r2⋅x = 0

rm⋅x = 0
⋯
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Linear System & Inner Product (2)

a11x1 + a12x2 + ⋯ + a1nxn = 0

Homogeneous Linear System

a21x1 + a22x2 + ⋯ + a2nxn = 0

am1x1 + am2x2 + ⋯ + amnxn = 0

⋯ ⋯ ⋯ ⋯ ⋯

r1⋅x = 0

r2⋅x = 0

rm⋅x = 0
⋯

each solution vector      of a homogeneous equationx

orthogonal to the row vector       of the coefficient matrixr i

A⋅x = 0Homogeneous Linear SystemHomogeneous Linear System A : m×n

solution set consists of all vectors in     Rn

that are orthogonal to every row vector of A
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Linear System & Inner Product (3)

A⋅x = 0Homogeneous Linear System

A : m×n

solution set consists of all vectors in     Rn

that are orthogonal to every row vector of A

A⋅x = bNon-Homogeneous Linear System

a particular solution x0 A⋅x0 = b

+

a particular solution

A⋅x = b

x

y

z

x = (x , y , z )

n = (a,b ,c)

R3

x

y

z

x = (x , y , z )

n = (a,b ,c)

R3

x = (x0 , y0 , z0)
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Linear System & Inner Product (4)
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Consistent Linear System Ax=b 
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Rank and Nullity
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Rnsubspace of

NULL Space Ax = 0solution spaceRnsubspace of

Invertible  A x = A−10 = 0 only trivial solution

Non-invertible  A zero row(s) in a RREF free variables parameters   s, t, u, … 

dim(row space of A) =  dim(column space of A) = rank(A)

dim(null space of A) =  nullity(A)
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1

Solution Space of Ax=0

x1 = −1 − 3t

x2 = 2 + 4 t
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Solution of

the same case

rank(A) = 2dim(row space of A)
dim(col space of A)

dim(null space of A) nullity(A) = 
1
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nullity(A) = 
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Elementary Row Operation (1)

Elementary row operations do not change  the null space of a matrix

Elementary row operations do not change  the row space of a matrix

Elementary row operations do change  the col space of a matrix

Elementary row operations do not change  
the linear dependence and linear independence relationship 
among column vectors 

= span{r1 , r 2 , ⋯ , rm}

ROW Space

= span{c1 , c2 , ⋯ , cn}

COLUMN Space Rmsubspace of

Rnsubspace of NULL Space

Ax = 0solution space

Rnsubspace of

free variables parameters   s, t, u, … 



Fundamental Matrix 
Spaces (4A) 19 Young Won Lim

11/24/12

Elementary Row Operation (2)

Elementary row operations do not change  the null space of a matrix
Elementary row operations do not change  the row space of a matrix
Elementary row operations do not change  the linear dependence and 
linear independence relationship among column vectors 

Elementary row operations do change  the col space of a matrix

× c

× c
+ + + +

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0

A R
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Elementary Row Operation (3)

Elementary row operations 
● do not change  the null space of a matrix
● do not change  the row space of a matrix
● do not change  the linear dependence and linear independence 

relationship among column vectors 

● do change  the col space of a matrix
●

A R
row space of A = row space of R
null space of A = null space of R
col space of A ≠ col space of R

a given set of 
column vectors

the corresponding set of 
column vectors

linearly 
independent

linearly 
independent

basis basis
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Bases of Row & Column Spaces (1)

1
1

1
1

basis of 
row space 
of R

basis of 
row space 
of A

basis of 
col space 
of R

basis of 
col space 
of A

=

≠

a given set of 
column vectors

the corresponding set of 
column vectors

dim(row space of A) =  dim(column space of A) = rank(A)

1
1

1
1
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Bases of Row & Column Spaces (2)

basis of 
col space 
of R

basis of 
col space 
of A

≠

the basis consisting of columns of A

basis of 
col space 
of R

basis of 
col space 
of A

≠

the basis consisting of rows of A

1
1

1
1

1
1

1
1
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Bases of Row & Column Spaces (3)

basis of 
col space 
of R

the basis consisting of rows of A

1
1

1
1

basis of 
col space 
of R

basis of 
col space 
of A

≠

the basis consisting of columns of A

1
1

1
1
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General Solution of Ax=b (1)

A⋅x = 0Homogeneous Linear System

A : m×n

solution set consists of all vectors in     Rn

that are orthogonal to every row vector of A

A⋅x = bNon-Homogeneous Linear System

a particular solution x0 A⋅x0 = b

+

a particular solution

A⋅x = b

The general solution of a consistent linear system can be written as

the sum of a particular solution of Ax=b and the general solution of Ax=0
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General Solution of Ax=b (2)

A⋅x = 0A basis for the null space   (solution space )  S = {v1 , v2 , ⋯ , vk}

A⋅x = bAny solution of a consistent linear system

The general solution of a consistent linear system can be written as

the sum of a particular solution of Ax=b and the general solution of Ax=0

Every solution of 

x = x0 + c1v1 + c2v2 + ⋯ ,c1vk

x0

A⋅x = b

is a solution of 

x = x0 + c1v1 + c2v2 + ⋯ + ckvk

A⋅x = b

c1 , c2 , ⋯ ckfor all choices of scalars 

x

 in the form
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Rank and Nullity (1)

1
1

1
1

1
1

1
1

# of leading variables # of leading 
variables

m (< n)

n n (< m)

m

m (=n)

n (=m)

rank(A) ≤ min(m, n)

m = (# of leading variables) + (# of  zero rows)
n = (# of leading variables) + (# of  free variables)

n = rank(A) + nullity(A)

# of  zero rows
= # of  free var's
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Rank and Nullity (2)

1
1

1
1

1
1

1
1

# of leading variables = r

# of leading 
variables = r

m (< n)

n n (< m)

m

m (=n)

n (=m)

rank(A) ≤ min(m, n)

n = rank(A) + nullity(A)

rank(A) = r r

# of parameters    = n - r

# of parameters 
= n - r

1
1

1
1

 r

rank(A)
nullity(A)
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Overdetermined System

1
1

1

1

# of leading 
variables

n (< m)

m

n column vectors

A

=

x b

can span at most Rn

b is in Rm Rm ⊃ Rnb is in Rm

At least one vector b in Rm

does not lie in column space

For such b in Rm

At least one vector b in Rm

Ab = b inconsistent 

A x = x1 c1 + x2 c2 + ⋯ + xn cn = b

b is in Rmn column vectors can span at most Rn
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Overdetermined System Example

1

0

0

0

1

0

b1

b2

b3

may be consistent or inconsistent  
depending on b1, b2, b3

Overdetermined Ab = b  

 b3 = 0 consistent unique solution

1

0

0

0

1

0

c1

c2

c3

0 0 c4

0 0 c5

r = 2n = 2

# of parameters = n - r = 0 unique

c3 = 0 & c4 = 0 & c5 = 0
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Underdetermined System

=

x b

at least one parameter

1
1

1
1

# of leading variables

m (< n)

n

A

inconsistent

Ab = b  

consistent but 
infinitely many 
solutions

rank(A) = r ≤ m 

n – r parameters

n – m > 0 parameters

infinitely many solutions
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Fundamental Matrix Spaces (1) 

1
1

1
1

1
1

1
1m (< n)

n m (< n)

n

rr

AT

A

row(A)

col(A)

col(AT)

row(AT)

null(A) null(AT)

=

=
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Fundamental Matrix Spaces (2) 

1
1

1
1

1
1

1
1m (< n)

n

rr

AT

A

row(A)

col(A)

col(AT)

row(AT)

null(A) null(AT)

=

=

rank(A)  = 
rank(AT) = r

nullity(A)
= n – r

nullity(AT)
= m – r

n = rank(A) + nullity(A) m = rank(A) + nullity(AT)
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Orthogonal Complement

a subspace of 

m = rank(A) + nullity(AT)

W Rn

The set of all vectors in Rn

that are orthogonal 
to every vector in W

The orthogonal complement of W

W ⊥

W ⊥ a subspace of Rn

W ⊥
∩ W = {0 }

The orthogonal complement of W W ⊥

The orthogonal complement of WW ⊥
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Fundamental Matrix Spaces (3) 

1
1

1
1

1
1

1
1m (< n)

n

rr

AT

A

n = rank(A) + nullity(A) m = rank(A) + nullity(AT)

The orthogonal complements 

row(A) null(A)

row(AT) null(AT)

col(A) null(AT)

⊥

⊥

⊥
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A nxn Matrix A

1. A is invertible
2. Ax = 0 has only the trivial solution
3. The RREF(A) = I

n
  

4. A can be written as a product of elementary matrix
5. Ax = b is consistent for every n x 1 b
6. Ax = b has exactly one solution for every n x 1 b

7. det(A) ≠ 0 

8. The column vectors are linearly independent
9.  The row vectors are linearly independent
10. The column vectors span Rn

11. The row vectors span Rn

12. The column vectors form a basis for Rn

13. The row vectors form a basis for Rn

14. rank(A) = n
15. nullity(A) = 0
16. The orthogonal complement of the null space is Rn  
17. The orthogonal complement of the row space is {0}  
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