Fundamental Matrix Spaces (4A)

Young Won Lim 11/24/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/24/12

Row & Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ROW Spacesubspace of
$$\mathbb{R}^n$$
 $= span\{r_1, r_2, \cdots, r_m\}$ **COLUMN Space**subspace of \mathbb{R}^m $= span\{c_1, c_2, \cdots, c_n\}$

 $\mathbf{r}_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$ $\mathbf{r}_{2} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$ $\vdots \vdots & \vdots & \vdots$ $\mathbf{r}_{m} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ $\mathbf{r}_{i} \in \mathbb{R}^{n} \qquad \mathbf{n}$

$$C_1$$
 C_2 C_n $c_i \in R^m$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} \vdots \vdots \ldots a_{2n} \vdots a_{m2} \cdots

Fundamental Matrix Spaces (4A)

Row Space

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ROW Space subspace of
$$\mathbb{R}^n$$

= $span\{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m\}$
= $\{\mathbf{w}\}$

$$\boldsymbol{r}_i \in \boldsymbol{R}^n$$

$$\boldsymbol{w} = k_1 \boldsymbol{r_1} + k_2 \boldsymbol{r_2} + \cdots + k_m \boldsymbol{r_m}$$

$$\mathbf{r}_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$$
$$\mathbf{r}_{2} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$$
$$\vdots \vdots & \vdots & \vdots$$
$$\mathbf{r}_{m} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
$$\mathbf{n}$$

$$= k_{1} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \\ + k_{2} \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \\ \vdots & \vdots & \vdots \\ + k_{m} \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Fundamental Matrix Spaces (4A)

Young Won Lim 11/24/12

Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

COLUMN Space subspace of
$$\mathbb{R}^m$$

= $span\{\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}\}$
= $\{\mathbf{w}\}$

$$\mathbf{c}_{i} \in \mathbb{R}^{m} \quad \mathbf{C}_{1} \quad \mathbf{C}_{2} \qquad \mathbf{C}_{n}$$

$$\mathbf{m} \quad \begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{vmatrix} \quad \begin{vmatrix} a_{12} \\ a_{12} \\ \vdots \\ a_{22} \\ \vdots \\ a_{m2} \end{vmatrix} \quad \cdots \quad \begin{vmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{vmatrix}$$

$$\boldsymbol{w} = k_1 \boldsymbol{c_1} + k_2 \boldsymbol{c_2} + \cdots + k_n \boldsymbol{c_n}$$

$$= k_{1} \begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{vmatrix} + k_{2} \begin{vmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{vmatrix} + k_{n} \begin{vmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{vmatrix}$$

Null Space

Null Space

$m \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots \end{bmatrix}$	$\begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$	$= \left(\begin{array}{c} 0\\ 0\\ \vdots\\ 0 \end{array}\right)$	n	
NULL Space solution space	subspace of R^n Ax = 0			
Invertible A	$x = A^{-1}0 = 0$	only trivial	solution	$\{0\}$
Non-invertible A	zero row(s) in a RREF one two three	free variables one two three	parameters <i>s, t, u,</i> a <u>line</u> through the origin a <u>plane</u> through the origin a <u>3-dim</u> space through the origin	$egin{array}{c} R^1 \ R^2 \ R^3 \end{array}$

Solution Space of **Ax=b** (1)

1 0 0	0	1	0	3	-1	1	-5	1	4
0 1 2	0	0	1	-4	2	0	0	0	0
0 0 0	1	0	0	0		0	0	0	0
$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3$	= 1	$1 x_1$	+ $1(x_2)$ -	$3 \cdot x_3 = 4 \cdot x_3 = 1$	-1 2	$1 x_1$	-5x	$_{2} + 1 x$	$r_{3} = 4$
Solve for a leading	variable	_	-1- 2+4·	-		<i>X</i> ₁	= 4 ·	+ 5· <i>x</i> ₂	$-1 \cdot x_3$
Treat a free variabl as a parameter	le	$x_{3} =$	t			<i>x</i> ₂	= <i>s</i>	x ₃ =	= t
		$\int x_1 =$	-1-	3t		$\begin{pmatrix} x_1 \end{pmatrix}$	= 4	+ 5 <i>s</i> –	- 1 <i>t</i>
		$\begin{cases} x_2 = \end{cases}$	-1- 2+4	t		$\begin{cases} x_2 \end{cases}$	= s = t		
		$x_3 =$	t			x_3	= t		

Solution Space of Ax=b (2)

Spaces (4A)

9

11/24/12

Solution Space of Ax=b (3)

1 0 0	0 1 0	0 2 0	0 0 1		1 0 0	0 1 0	3 -4 0	-1 2 0			1 0 0	-5 0 0	1 0 0	4 0 0	
					$x_1 = -$ $x_2 = -$ $x_3 = -$	—1 — 3 2 + 4 <i>t</i> t	3t				$x_1 = x_2 = x_3 = x_3 = x_3$		s — 1	t	
				$\begin{bmatrix} x \\ x \\ x \end{bmatrix}$	2 =	$\begin{bmatrix} -1\\2\\0\end{bmatrix}$	+ $t\begin{bmatrix} -3\\4\\1 \end{bmatrix}$			X	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$	$\begin{bmatrix} 4\\0\\0\end{bmatrix}$	+ $s\begin{bmatrix}5\\1\\0\end{bmatrix}$	+t	$\begin{bmatrix} -1\\0\\1\end{bmatrix}$
	Gene Solut	ion of			Partic Soluti Ax =	on of	Solu	neral ution c = 0	of		Solu	ticular ution c = b	of	Gener Solutio Ax =	on of

Linear System & Inner Product (1)

Linear Equations

Corresponding Homogeneous Equation

$$\boldsymbol{a}$$
 = $(\boldsymbol{a}_1$, \boldsymbol{a}_2 , \cdots , $\boldsymbol{a}_n)$

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$$

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

normal vector
$$a \cdot x = b$$

$$a \cdot x = 0$$

each solution vector \mathbf{x} of a homogeneous equation orthogonal to the coefficient vector \mathbf{a}

Homogeneous Linear System

Fundamental Matrix Spaces (4A)

Linear System & Inner Product (2)

Homogeneous Linear System

each solution vector \mathbf{X} of a homogeneous equation orthogonal to the row vector \mathbf{r}_i of the coefficient matrix

Homogeneous Linear System $\mathbf{A} \cdot \mathbf{x} = \mathbf{0}$ $\mathbf{A} : m \times n$

solution set consists of all vectors in \mathbb{R}^n that are **orthogonal** to every row vector of \mathbb{A}

Linear System & Inner Product (3)

Fundamental Matrix Spaces (4A)

13

Linear System & Inner Product (4)

Fundamental Matrix Spaces (4A)

Consistent Linear System **Ax=b**

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{cases} a_{11}x_1 + a_{12}x_2 + & \cdots & a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + & \cdots & a_{2n}x_n \\ \vdots & \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \cdots & a_{mn}x_n \end{cases}$$

$$Ax = b \quad \text{consistent} \quad \bigstar \quad x_n = b \\ \text{expressed in linear combination} \\ \text{of column vectors} \qquad = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} \dots + x_n \begin{pmatrix} a_{1n} \\ a_{1n} \\ a_{1n} \end{pmatrix} = x_1 \begin{pmatrix} a_{1n} \\ a_{1n} \\ a_{1n} \\ a_{1n} \end{pmatrix} = x_1 \begin{pmatrix} a_{1n} \\ a_{2n} \\ a_{2n} \\ a_{2n} \end{pmatrix} \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ a_{2n} \\ a_{2n} \end{pmatrix}$$

$$Ax = x_1c_1 + x_2c_2 + \cdots + x_nc_n = b$$

•

*a*_{1*n*}

 a_{2n}

a_{mn},

 \boldsymbol{x}_n

Rank and Nullity

	$a_{11} a_{12} \cdots$	$\cdot a_{1n}$	ROW Space subs = $span\{r_1, r_2, \cdots, $	pace of R^n
A =	$\begin{array}{cccc} a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \\ a_{m1} & a_{m2} & \cdots \end{array}$	$\begin{array}{ccc} \cdot & a_{1n} \\ \cdot & a_{2n} \\ & \vdots \\ \cdot & a_{mn} \end{array}$		pace of R^m
NULL Sp		subspace of R^n	solution space $Ax = 0$	⊂ n ∫
Inverti Non-in	ble A ivertible A	$x = A^{-1}0 = 0$ zero row(s) in a RREF	only trivial solution free variables parameters s, t, u,	

dim(row space of A) = dim(column space of A) = rank(A)
dim(null space of A) = nullity(A)

Solution Space of Ax=0

Elementary Row Operation (1)

ROW Space subspace	e of R^n
$= span\{r_1, r_2, \cdots, r_m\}$	•}
COLUMN Space subspace	e of R^m
$= span\{\boldsymbol{c_1}, \boldsymbol{c_2}, \cdots, \boldsymbol{c_n}\}$	}

NULL Space	subspa	ce of	R^n
solution space	Ax =	0	
free variables	parameters	s, t, u,	

Elementary row operations do <u>not change</u> the **null space** of a matrix

Elementary row operations do <u>not change</u> the **row space** of a matrix

Elementary row operations <u>do change</u> the col space of a matrix

Elementary row operations do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors Elementary row operations do <u>not change</u> the **null space** of a matrix Elementary row operations do <u>not change</u> the **row space** of a matrix Elementary row operations do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors

Elementary row operations <u>do change</u> the col space of a matrix

Elementary row operations

- do not change the null space of a matrix
- do not change the row space of a matrix
- do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors
- **<u>do change</u>** the **col space** of a matrix

Bases of Row & Column Spaces (1)

dim(row space of A) = dim(column space of A) = rank(A)

Bases of Row & Column Spaces (2)

the basis consisting of columns of A

the basis consisting of rows of A

Fundamental Matrix Spaces (4A)

Bases of Row & Column Spaces (3)

General Solution of Ax=b (1)

The general solution of a consistent linear system can be written as

the sum of <u>a particular solution</u> of **Ax=b** and <u>the general solution</u> of **Ax=0**

General Solution of Ax=b (2)

Any solution of a **consistent** linear system $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ A **basis** for the **null space** (solution space $\mathbf{A} \cdot \mathbf{x} = \mathbf{0}$) $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$

Every solution of $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$

in the form
$$x = x_0 + c_1 v_1 + c_2 v_2 + \cdots , c_1 v_k$$

x is a solution of
$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$

x = $\mathbf{x_0} + c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \cdots + c_k \mathbf{v_k}$
for all choices of scalars $c_1, c_2, \cdots c_k$

The general solution of a consistent linear system can be written as

the sum of <u>a particular solution</u> of Ax=b and <u>the general solution</u> of Ax=0

Rank and Nullity (1)

Rank and Nullity (2)

Overdetermined System

Spaces (4A)

Overdetermined System Example

Overdetermined **Ab = b**

may be <u>consistent</u> or <u>inconsistent</u> depending on b1, b2, b3

b3 = 0 m <u>consistent</u> <u>unique solution</u>

n = 2 **r** = 2

of parameters = n - r = 0 <u>unique</u>

c3 = 0 & c4 = 0 & c5 = 0

Underdetermined System

Fundamental Matrix Spaces (1)

Fundamental Matrix Spaces (2)

Orthogonal Complement

```
m = rank(A) + nullity(A^{T})
```


$$W^{\perp}$$
 a subspace of R^n

 $W^{\perp} \cap W = \{ \mathbf{0} \}$

The orthogonal complement of WThe orthogonal complement of W^{\perp} $W^{\perp} \ W$

Fundamental Matrix Spaces (3)

A nxn Matrix A

- 1. A is invertible
- 2. **Ax = 0** has only the **trivial** solution
- 3. The $RREF(A) = I_n$
- 4. A can be written as a product of elementary matrix
- 5. Ax = b is consistent for every n x 1 b
- 6. **Ax** = **b** has exactly one solution for every n x 1 **b**

7. **det(A)** ≠ 0

- 8. The column vectors are linearly independent
- 9. The row vectors are linearly independent
- 10. The column vectors span Rⁿ
- 11. The row vectors span Rⁿ
- 12. The column vectors form a basis for Rⁿ
- 13. The row vectors form a basis for Rⁿ
- 14. **rank**(**A**) = n
- 15. **nullity**(**A**) = 0
- 16. The orthogonal complement of the null space is \mathbb{R}^n
- 17. The orthogonal complement of the row space is **{0**}

References

- [1] http://en.wikipedia.org/
- [2] Anton, et al., Elementary Linear Algebra, 10th ed, Wiley, 2011
- [3] Anton, et al., Contemporary Linear Algebra,