Double Integrals (5A)

- Double Integral
- Double Integrals in Polar Coordinates
- Green's Theorem

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Area and Volume

$$A = \iint\limits_R dA$$

$$V = \iint\limits_R f(x,y) dA$$

Type I and Type II

12/1/12

Fubini's Theorem

Type A and Type B

$$\iint_{R} f(r,\theta) dA$$

$$= \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r,\theta) r dr d\theta$$

$$\iint_{R} f(r,\theta) dA$$

$$= \int_{a}^{b} \int_{h_{1}(r)}^{h_{2}(r)} f(r,\theta) d\theta r dr$$

Work using an Arc Length Parameter s

$$W = \mathbf{F} \cdot \mathbf{d}$$

A force field
$$F(x,y) = P(x,y)i + Q(x,y)j$$

A smooth curve
$$C: x = f(t), y = g(t), a \le t \le b$$

Work done by **F** along C
$$W = \int_{a} \mathbf{F}(x, y) \cdot d\mathbf{r}$$

$$W = \int_{c} \mathbf{F}(x, y) \cdot d\mathbf{r}$$

$$= \int_C P(x, y) dx + Q(x, y) dy$$

 $\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt}$

$$d\mathbf{r} = \frac{d\mathbf{r}}{ds}ds$$
 $d\mathbf{r} = \mathbf{T}ds$

$$d\mathbf{r} = \mathbf{T} ds$$

$$W = \int_{c} \mathbf{F} \cdot d\mathbf{r} = \int_{c} \mathbf{F} \cdot \mathbf{T} ds$$

Unit Tangent Vector

Green's Theorem in the Plane (1)

C: a piecewise simple closed curve

bounding by a simply connected region R

$$\oint_C P dx + Q dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Line Integral

Double Integral

$$\int_{y_1}^{y_2} f'(y) dy = f(y_2) - f(y_1)$$

$$\int_{x_1}^{x_2} f'(x) dx = f(x_2) - f(x_1)$$

Line Integral in the Plane (2)

Line Integral

$$\oint_C \frac{P \, dx}{} + Q \, dy$$

Double Integral

$$\iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Green's Theorem in the Plane (3)

C: a piecewise c simple closed curve

R: a simply connected bounding region

$$x = h_{1}(y)$$

$$C$$

$$x = h_{2}(y)$$

$$Q d y$$

$$\int_{R} \frac{\partial Q}{\partial x} dA$$

$$= -\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \frac{\partial Q}{\partial x} dx dy$$

$$= -\int_{c}^{d} \left[Q(h_{2}(y), y) - Q(h_{1}(y), y) \right] dy$$

$$= \int_{c}^{d} Q(h_{1}(y), y) dx - \int_{a}^{b} P(h_{2}(y), y) dx$$

$$= \oint_{C} Q d y$$

 $= \oint P dx$

Region with Holes

C: a piecewise simple closed curve

bounding by a simply connected region R

$$\oint_C P dx + Q dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Line Integral

Double Integral

Vector Form of Green's Theorem - Curl

C: a piecewise simple closed curve

bounding by a simply connected region R

$$\oint_C P dx + Q dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Line Integral

Double Integral

curl
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & \mathbf{0} \end{vmatrix}$$
$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathbf{k}$$

$$\oint_C P dx + Q dy = \iint_R (\nabla \times \mathbf{F}) \cdot k dA$$

$$(\nabla \times \mathbf{F}) \cdot \mathbf{k} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)$$

Vector Form of Green's Theorem - Div (1)

C: a piecewise simple closed curve

bounding by a simply connected region R

$$\oint_C P dx + Q dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Line Integral

Double Integral

$$\oint_C (\mathbf{F} \cdot \mathbf{n}) \, ds = \oint_C P \, dy - Q \, dx$$

Vector Form of Green's Theorem - Div (2)

C: a piecewise simple closed curve

bounding by a simply connected region R

$$\oint_C P dx + Q dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Line Integral

Double Integral

$$\oint_C (\mathbf{F} \cdot \mathbf{T}) \, ds = \oint_C P \, dx + Q \, dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

$$= \iint\limits_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

$$\oint_C (\mathbf{F} \cdot \mathbf{n}) \, ds = \oint_C P \, dy - Q \, dx = \iint_R \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dA$$

$$= \iint\limits_{R} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dA$$

Vector Form of Green's Theorem - Div

C: a piecewise simple closed curve

bounding by a simply connected region R

Double Integral

div **F**

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

2-Divergence

Flux across rectangle boundary

$$\approx \left(\frac{\partial M}{\partial x} \Delta x\right) \Delta y + \left(\frac{\partial N}{\partial y} \Delta y\right) \Delta x = \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) \Delta x \Delta y$$

Flux density
$$= \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right)$$
 Divergence of **F** Flux Density

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
- [4] D.G. Zill, "Advanced Engineering Mathematics"