
Young Won Lim
11/28/16

File System – System Calls (1A)

Young Won Lim
11/28/16

 Copyright (c) 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

File System –
System Calls (1A) 3 Young Won Lim

11/28/16

Read System Call

ssize_t read(int fd, void *buf, size_t count);

fd: the file descriptor of the file,
buf: the buffer where the read data is to be stored and
count:the number of bytes to be read from the file.

The file is identified by a file descriptor that is
normally obtained from a previous call to open. This
system call reads in data in bytes, the number of
which is specified by the caller, from the file and
stores then into a buffer supplied by the calling
process.

https://en.wikipedia.org/wiki/Read_(system_call)

File System –
System Calls (1A) 4 Young Won Lim

11/28/16

Write System Call

ssize_t write(int fd, const void *buf, size_t nbytes);

fd: the file code (file descriptor or fd).
buf: the pointer to a buffer where the data is stored (buf).
nbytes: the number of bytes to write from the buffer (nbytes).

The write system call is one of the most basic
routines provided by the kernel. It writes data from a
buffer declared by the user to a given device,
maybe a file. This is primary way to output data
from a program by directly using a system call. The
destination is identified by a numeric code. The data
to be written, for instance a piece of text, is defined
by a pointer and a size, given in number of bytes.

https://en.wikipedia.org/wiki/Write_(system_call)

File System –
System Calls (1A) 5 Young Won Lim

11/28/16

Open System Call

int open(const char *path, int oflag, .../*,mode_t mode */);
int creat(const char *path, mode_t mode);

Path: The name of the file to open. It includes the file path defining where, in
which file system, the file is found (or should be created).

Oflag:
This argument formed by OR'ing together optional parameters and (from
<fcntl.h>) one of: O_RDONLY, O_RDWR and O_WRONLY
Option parameters include:
 O_APPEND, O_CREAT, O_EXCL, O_TRUNC

Mode:
Optional and relevant only when creating a new file, defines the file
permissions. These include read, write or execute the file by the owner, group
or all users. The mode is masked by the calling process's umask: bits set in
the umask are cleared in the mode. https://en.wikipedia.org/wiki/Open_(system_call)

File System –
System Calls (1A) 6 Young Won Lim

11/28/16

Close System Call

int close (int filedes);

For most file systems, a program terminates access
to a file in a filesystem using the close system call.
This flushes buffers, updates file metadata (which
may include and end of file indicator in the data),
de-allocates resources associated with the file
(including the file descriptor) and updates the
system wide table of files in use.

https://en.wikipedia.org/wiki/Open_(system_call)

File System –
System Calls (1A) 7 Young Won Lim

11/28/16

File Descriptor

a file descriptor (fd, fildes) is an abstract indicator (handle)
used to access a file or other input/output resource,
such as a pipe or network socket.

the POSIX application programming interface
a non-negative integer (int)
(negative for "no value" or an error condition).

three standard POSIX file descriptors,
corresponding to the three standard streams:
Int val Name symbolic constant file stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT_FILENO stdout
2 Standard error STDERR_FILENO stderr

<unistd.h> <stdio.h>

https://en.wikipedia.org/wiki/Open_(system_call)

File System –
System Calls (1A) 8 Young Won Lim

11/28/16

File Descriptor (1)

file descriptors index into a per-process file descriptor table
A file descriptor table indexes into the file table
The file table indexes into the inode table

https://en.wikipedia.org/wiki/File_descriptor

File System –
System Calls (1A) 9 Young Won Lim

11/28/16

File Descriptor (2)

A file descriptor table
● maintained by the kernel

The file table
● a system-wide table of files opened by all processes
● records the mode (r, w, a, rw, and etc)
● indexes into a third table called the inode table that describes the actual

The inode table
● describes the actual underlying files

https://en.wikipedia.org/wiki/File_descriptor

File System –
System Calls (1A) 10 Young Won Lim

11/28/16

File Descriptor (3)

https://en.wikipedia.org/wiki/File_descriptor

To perform input or output,

the process passes the file descriptor
to the kernel through a system call,

and the kernel will access the file on behalf of the process.

The process does not have direct access
to the file or inode tables.

Young Won Lim
11/28/16

References

[1] http://minix1.woodhull.com/current/2.0.4/
[2]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

