
Young Won Lim
11/28/16

File System – System Calls (1A)



Young Won Lim
11/28/16

 Copyright (c)  2016  Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any later 
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the license is 
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com


File System – 
System Calls (1A) 3 Young Won Lim

11/28/16

Read System Call

ssize_t read(int fd, void *buf, size_t count);

fd: the file descriptor of the file,
buf: the buffer where the read data is to be stored and
count:the number of bytes to be read from the file.

The file is identified by a file descriptor that is 
normally obtained from a previous call to open. This 
system call reads in data in bytes, the number of 
which is specified by the caller, from the file and 
stores then into a buffer supplied by the calling 
process.

https://en.wikipedia.org/wiki/Read_(system_call)
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Write System Call

ssize_t write(int fd, const void *buf, size_t nbytes);

fd: the file code (file descriptor or fd).
buf: the pointer to a buffer where the data is stored (buf).
nbytes: the number of bytes to write from the buffer (nbytes).

The write system call is one of the most basic 
routines provided by the kernel. It writes data from a 
buffer declared by the user to a given device, 
maybe a file. This is primary way to output data 
from a program by directly using a system call. The 
destination is identified by a numeric code. The data 
to be written, for instance a piece of text, is defined 
by a pointer and a size, given in number of bytes.

https://en.wikipedia.org/wiki/Write_(system_call)
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Open System Call

int open(const char *path, int oflag, .../*,mode_t mode */);
int creat(const char *path, mode_t mode);

Path: The name of the file to open. It includes the file path defining where, in 
which file system, the file is found (or should be created).

Oflag:
This argument formed by OR'ing together optional parameters and (from 
<fcntl.h>) one of:  O_RDONLY, O_RDWR and O_WRONLY
Option parameters include:
    O_APPEND, O_CREAT, O_EXCL, O_TRUNC

Mode:
Optional and relevant only when creating a new file, defines the file 
permissions. These include read, write or execute the file by the owner, group 
or all users. The mode is masked by the calling process's umask: bits set in 
the umask are cleared in the mode. https://en.wikipedia.org/wiki/Open_(system_call)



File System – 
System Calls (1A) 6 Young Won Lim

11/28/16

Close System Call

int close (int filedes);

For most file systems, a program terminates access 
to a file in a filesystem using the close system call. 
This flushes buffers, updates file metadata (which 
may include and end of file indicator in the data), 
de-allocates resources associated with the file 
(including the file descriptor) and updates the 
system wide table of files in use. 

https://en.wikipedia.org/wiki/Open_(system_call)
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File Descriptor

a file descriptor (fd, fildes) is an abstract indicator (handle) 
used to access a file or other input/output resource, 
such as a pipe or network socket. 

the POSIX application programming interface
a non-negative integer (int)
(negative for "no value" or an error condition).

three standard POSIX file descriptors, 
corresponding to the three standard streams:
Int val Name symbolic constant file stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT_FILENO stdout
2 Standard error STDERR_FILENO stderr

<unistd.h> <stdio.h>

https://en.wikipedia.org/wiki/Open_(system_call)
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File Descriptor (1)

file descriptors index into a per-process file descriptor table
A file descriptor table indexes into the file table 
The file table indexes into the inode table

https://en.wikipedia.org/wiki/File_descriptor
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File Descriptor (2)

A file descriptor table 
● maintained by the kernel

The file table
● a system-wide table of files opened by all processes
● records the mode (r, w, a, rw, and etc)
● indexes into a third table called the inode table that describes the actual 

The inode table
● describes the actual underlying files

https://en.wikipedia.org/wiki/File_descriptor
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File Descriptor (3)

https://en.wikipedia.org/wiki/File_descriptor

To perform input or output, 

the process passes the file descriptor 
to the kernel through a system call, 

and the kernel will access the file on behalf of the process. 

The process does not have direct access 
to the file or inode tables.
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