
Young Won Lim
02/25/2013

Pthread (9A)

● Pthread

Young Won Lim
02/25/2013

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Pthread (9A) 3 Young Won Lim
02/25/2013

Pthread Creation and Termination

int pthread_create (pthread_t * thread,
const pthread_attr_t * attr,

 void *(*start_routine) (void*),

void * arg);

void pthread_join(pthread_t thread, void **status);

void pthread_detach(pthread_t thread);

void pthread_exit(void *status);

int pthread_cancel(pthread_t thread);

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

stores the ID of the created thread
in the location referenced by thread

to wait for a thread to terminate

an alternative to pthread_join()
to reclaim storage for a thread

* pointer type

Pthread (9A) 4 Young Won Lim
02/25/2013

Creating a Default Thread

pthread_t tid;
pthread_attr_t tattr;
extern void * start_routine (void *arg);
void * arg;
int ret;

int pthread_create (pthread_t * thread,
const pthread_attr_t * attr,

 void *(*start_routine) (void*),
void * arg);

ret = pthread_create(&tid, NULL, start_routine, arg);

Default Attributes
scope PTHREAD_SCOPE_PROCESS : unbounded
detachstate PTHREAD_CREATE_JOINABLE : nondetatched
stackaddr NULL : default stack
stacksize 1 megabyte : default stack size
inheritsched PTHREAD_INHERIT_SCHED : inherit parent's priority

ret = pthread_attr_init(&tattr);
ret = pthread_create(&tid, &tattr, start_routine, arg);

Create default attributes

stores the ID of the created thread
in the location referenced by thread

Pthread (9A) 5 Young Won Lim
02/25/2013

Waiting for a thread to terminate

pthread_t tid;
pthread_attr_t tattr;
extern void * start_routine (void *arg);
void * arg;
int ret;

ret = pthread_create(&tid, NULL, start_routine, arg);
ret = pthread_attr_init(&tattr);
ret = pthread_create(&tid, &tattr, start_routine, arg);

 pthread_join(tid, NULL);
int * status;
 pthread_join(tid, &status);

void pthread_join(pthread_t thread, void **status);

exit code of the defunct thread

to wait for a thread to terminate

works only for target threads that are nondetached

blocks the calling thread
until the specified thread terminates.

thread

status

Pthread (9A) 6 Young Won Lim
02/25/2013

Detaching a thread

pthread_t tid;
pthread_attr_t tattr;
extern void * start_routine (void *arg);
void * arg;
int ret;

void pthread_detach(pthread_t thread); an alternative to pthread_join() to reclaim storage
for a thread that is created with a detachstate
attribute set to PTHREAD_CREATE_JOINABLE.

If tid has not terminated, pthread_detach() does
not cause it to terminate.

 pthread_detach(tid);

ret = pthread_create(&tid, NULL, start_routine, arg);
ret = pthread_attr_init(&tattr);
ret = pthread_create(&tid, &tattr, start_routine, arg);

 pthread_join(tid, NULL);

exit code of the defunct thread

status

int * status;
 pthread_join(tid, &status);

Pthread (9A) 7 Young Won Lim
02/25/2013

Joining and Detaching

a pthread attribute variable of the pthread_attr_t type
pthread_attr_init()
pthread_attr_setdetachstate()

When done,
pthread_attr_destroy()

pthread_create

pthread_join

pthread_exit

WORK

tid

tid

thread tid

pthread_detachor

Default Attributes
scope PTHREAD_SCOPE_PROCESS : unbounded
detachstate PTHREAD_CREATE_JOINABLE : nondetatched
stackaddr NULL : default stack
stacksize 1 megabyte : default stack size
inheritsched PTHREAD_INHERIT_SCHED : inherit parent's priority

status

* If a thread is created as detached, it can never be joined.

Pthread (9A) 8 Young Won Lim
02/25/2013

Terminate a thread

A thread is terminated
● By returning from its first (outermost) procedure,
 the threads start routine;

● By calling pthread_exit(), supplying an exit status
● By termination with pthread_cancel()

void pthread_exit(void *status);

int pthread_cancel(pthread_t thread);

int status;
 pthread_exit(&status); ret = pthread_cancel(tid);

pthread_create

pthread_join

pthread_exit

thread tid

pthread_detachor

status

pthread_create

pthread_join

WORK

thread tid

pthread_detachor

pthread_cancel(tid)

Pthread (9A) 9 Young Won Lim
02/25/2013

Thread Cancellation

pthread_create

pthread_join

WORK

thread tid

pthread_detachor

pthread_cancel(tid)

int pthread_setcancelstate (int state, int *oldstate);

States
PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE.

int pthread_setcanceltype (int type, int *oldtype);

void pthread_testcancel (void);

Types
PTHREAD_CANCEL_DEFERRED

deferred until a cancellation point
PTHREAD_CANCEL_ASYNCHRONOUS.

cancel immediately even
not at a cancellation point

behaves like a cancellation point function

cancellation point function
read(), write(), open(), close(), fcntl(), sleep(),
wait(), waitpid(), pthread_join()

At a cancellation point,
1. always canceled immediately

Not at a cancellation point
2. Deferred – until a cancellation point
3. Asynchronous – immediately canceled

Pthread (9A) 10 Young Won Lim
02/25/2013

Mutex Variable

int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_mutex_init (pthread_mutex_t *restrict mutex,
 const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutexattr_destroy (pthread_mutexattr_t *attr);

int pthread_mutexattr_init (pthread_mutexattr_t *attr);

int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_trylock (pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

Pthread (9A) 11 Young Won Lim
02/25/2013

Creating & Destroying Mutex Variables

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Static Initialization

Dynamic Initialization

pthread_mutex_t mutex;
pthread_mutexattr_t attr;

Protocol: Specifies the protocol used
 to prevent priority inversions for a mutex.
Prioceiling: Specifies the priority ceiling of a mutex.
Process-shared: Specifies the process sharing of a mutex.

pthread_mutexattr_settype (&attr , type);

PTHREAD_MUTEX_TIMED_NP
PTHREAD_MUTEX_RECURSIVE_NP
PTHREAD_MUTEX_ERRORCHECK_NP

pthread_mutex_init (&mutex, &attr);

 pthread_mutexattr_destroy (&attr);

pthread_mutex_destroy (&mutex);

Pthread (9A) 12 Young Won Lim
02/25/2013

Locking & Unlocking Mutex Variables

to acquire a lock on the specified mutex variable.
already locked --> block until the mutex is unlocked.

int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_trylock (pthread_mutex_t *mutex);

to attempt to lock a mutex.
already locked --> return immediately with a "busy"
Useful in preventing deadlock conditions,
as in a priority-inversion situation.

int pthread_mutex_unlock (pthread_mutex_t *mutex);

Required after a thread has completed
An error will be returned if:
 If the mutex was already unlocked
 If the mutex is owned by another thread

Pthread (9A) 13 Young Won Lim
02/25/2013

Conditional Variable

int pthread_cond_destroy (pthread_cond_t *cond);

int pthread_cond_init (pthread_cond_t *restrict cond,
 const pthread_condattr_t *restrict attr);

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_condattr_destroy (pthread_condattr_t *attr);

int pthread_condattr_init (pthread_condattr_t *attr);

int pthread_cond_timedwait (pthread_cond_t *restrict cond,
 pthread_mutex_t *restrict mutex,
 const struct timespec *restrict abstime);

int pthread_cond_wait (pthread_cond_t *restrict cond,
 pthread_mutex_t *restrict mutex);

Pthread (9A) 14 Young Won Lim
02/25/2013

Reference

References

[1] http://en.wikipedia.org/
[2] http://www.tldp.org/LDP/lpg/node46.html

http://en.wikipedia.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

