
Young Won Lim
12/29/2012

Shared Memory (8A)

● Shared Memory

Young Won Lim
12/29/2012

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Shared Memory (8A) 3 Young Won Lim
12/29/2012

Shared Memory

● mapping of an area (segment) of memory

● shared by more than one process

● information is mapped directly from a memory segment,

● and into the addressing space of the calling process.

● A segment can be created by one process

● written to and read from by any number of processes

● the fastest form of IPC (no intermediation)

Shared Memory (8A) 4 Young Won Lim
12/29/2012

Kernel shmid_ds Structure

 /* One shmid data structure for each shared memory segment in the system. */
 struct shmid_ds {
 struct ipc_perm shm_perm; /* operation perms */
 int shm_segsz; /* size of segment (bytes) */
 time_t shm_atime; /* last attach time */
 time_t shm_dtime; /* last detach time */
 time_t shm_ctime; /* last change time */
 unsigned short shm_cpid; /* pid of creator */
 unsigned short shm_lpid; /* pid of last operator */
 short shm_nattch; /* no. of current attaches */

 /* the following are private */
 unsigned short shm_npages; /* size of segment (pages) */
 unsigned long * shm_pages; /* array of ptrs to frames -> SHMMAX */
 struct vm_area_struct * attaches; /* descriptors for attaches */
 };

Shared Memory (8A) 5 Young Won Lim
12/29/2012

Shared Memory System Calls

int shmget (key_t key, int size, int shmflg);

RETURNS: shared memory segment identifier on
success

int shmat (int shmid, char *shmaddr, int shmflg);

RETURNS: address at which segment was attached to
the process, or -1 on error

int shmdt (char *shmaddr);

RETURNS: 0 on success, -1 on error

int shmctl (int shmqid, int cmd, struct shmid_ds *buf);

RETURNS: 0 on success, -1 on error

shmflg

IPC_CREAT Create the segment if it
doesn't already exist in the kernel.

IPC_EXCL When used with IPC_CREAT,
fail if segment already exists.

SHM_RND round

SHM_RDONLY readonly.

cmd

IPC_STAT Retrieves the shmid_ds
structure for a segment, and stores it in the
address of the buf argument

IPC_SET Sets the value of the ipc_perm
member of the shmid_ds structure for a
segment. Takes the values from the buf
argument.

IPC_RMID Marks a segment for removal. .

Shared Memory (8A) 6 Young Won Lim
12/29/2012

shmget()

int shmget (key_t key, int size, int shmflg);

RETURNS: shared memory segment identifier on
success

shmflg

IPC_CREAT Create the segment if it
doesn't already exist in the kernel.

IPC_EXCL When used with IPC_CREAT,
fail if segment already exists.

shmid = shmget(keyval, segsize, IPC_CREAT | 0660))

shmid = shmget(keyval, segsize, IPC_CREAT | IPC_EXCL | 0660))

Shared Memory (8A) 7 Young Won Lim
12/29/2012

shmat()

int shmat (int shmid, char *shmaddr, int shmflg);

RETURNS: address at which segment was attached to
the process, or -1 on error

shmflg

SHM_RND forces a passed address to be
page aligned (rounds down to the nearest
page size).

SHM_RDONLY the shared memory
segment will be mapped in, but marked as
readonly.

char *attach_segment(int shmid)
{
 return(shmat(shmid, 0, 0));
}

Reading / Writing to the segment → Referencing / Dereferencing the pointer (address)

shmaddr

If zero (0), the kernel tries to find an unmapped region.

An address can be specified, to facilitate proprietary
hardware or to resolve conflicts with other apps.

shmflg

SHM_RND forces a passed address to be
page aligned (rounds down to the nearest
page size).

SHM_RDONLY the shared memory
segment will be mapped in, but marked as
readonly.

Shared Memory (8A) 8 Young Won Lim
12/29/2012

shmdt()

int shmdt (char *shmaddr);

RETURNS: 0 on success, -1 on error

shm_nattch member is decremented by one.

If it is zero (0), then the kernel will physically remove the segment.

not the same as removing the segment from the kernel

 struct shmid_ds {
 struct ipc_perm shm_perm;
 int shm_segsz;
 time_t shm_atime;
 time_t shm_dtime;
 time_t shm_ctime;
 unsigned short shm_cpid;
 unsigned short shm_lpid;
 short shm_nattch;

 /* the following are private */
 unsigned short shm_npages;
 unsigned long * shm_pages;
 struct vm_area_struct * attaches;
 };

Shared Memory (8A) 9 Young Won Lim
12/29/2012

shmctl()

int shmctl (int shmqid, int cmd, struct shmid_ds *buf);

RETURNS: 0 on success, -1 on error

cmd

IPC_STAT Retrieves the shmid_ds
structure for a segment, and stores it in the
address of the buf argument

IPC_SET Sets the value of the ipc_perm
member of the shmid_ds structure for a
segment. Takes the values from the buf
argument.

IPC_RMID Marks a segment for removal. .

struct shmid_ds {
 struct ipc_perm shm_perm;
 …
};

struct ipc_perm
{
 key_t key;
 ushort uid; /* owner euid and egid */
 ushort gid;
 ushort cuid; /* creator euid and egid */
 ushort cgid;
 ushort mode; /* access modes */
 ushort seq; /* slot usage seq number */
};

int cmd;
int shmid;
struct shmid_ds my_ds;

shmid = ...
cmd = ...
if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == -1) {
 perror("shmctl: shmctl failed");
 exit(1);
 }

shmctl(shmid, IPC_STAT, &my_ds); // read

my_ds.shm_perm.uid = new_uid;
my_ds.shm_perm.gid = new_gid;
shmctl(shmid, IPC_SET, &my_ds); // write

shmctl(shmid, IPC_RMID, 0); // remove

Shared Memory (8A) 10 Young Won Lim
12/29/2012

Reference

References

[1] http://en.wikipedia.org/
[2] http://www.tldp.org/LDP/lpg/node46.html

http://en.wikipedia.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

