
Young Won Lim
11/22/2012

Socket (1A)

● Socket

Young Won Lim
11/22/2012

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Socket (3A) 3 Young Won Lim
11/22/2012

Server Side Steps

● Create a socket with the socket() system call
● Bind the socket to an address using the bind() system call. For a

server socket on the Internet, an address consists of a port number
on the host machine.

● Listen for connections with the listen() system call
● Accept a connection with the accept() system call. This call

typically blocks until a client connects with the server.
● Send and receive data

Socket (3A) 4 Young Won Lim
11/22/2012

sockaddr

int bind(int sockfd, const struct sockaddr *addr,socklen_t addrlen);int bind(int sockfd, const struct sockaddr *addr,socklen_t addrlen);

When a socket is created,
it exists in a name space (address family)
but has no address assigned to it.
bind() assigns the address specified by addr
to the socket referred to by sockfd.
addrlen specifies the size, in bytes,
of the address structure pointed to by addr.

It is normally necessary to assign a local address using bind()
before a SOCK_STREAM socket may receive connections

Socket (3A) 5 Young Won Lim
11/22/2012

sockaddr

struct sockaddr {
 sa_family_t sa_family;
 char sa_data[14];
}

AF_INET : ip
AF_INET6 : ipv6
AF_UNIX : unix
AF_APPLETALK : ddp
AF_PACKET : packet
AF_X25 : x25
AF_NETLINK : netlink

Bind the socket to an address
For a server socket on the Internet
an address - a port number on the host machine.

struct sockaddr {
 sa_family_t sa_family;
 char sa_data[14];
}

Socket (3A) 6 Young Won Lim
11/22/2012

sockaddr_in

struct sockaddr_in
{
 short in_family; /* must be AF_INET */
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8]; /* Not used, must be zero */
};

typedef uint32_t in_addr_t;
struct in_addr
{
 in_addr_t s_addr;
};

struct sockaddr_in serv_addr, cli_addr;
bzero((char *) &serv_addr, sizeof(serv_addr));
/* sets all values in a buffer to zero */

int portno;
portno = atoi(argv[1]);

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(portno);
serv_addr.sin_addr.s_addr = INADDR_ANY;

bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr))

the IP address of the host. Server →
the IP address of the server machine
→ a symbolic constant INADDR_ANY

Socket (3A) 7 Young Won Lim
11/22/2012

Endian

unsigned long htonl(unsigned long)
 host to network conversion for long ints (4 bytes)
unsigned short htons(unsigned short)
 host to network conversion for short ints (2 bytes)
unsigned long ntohl(unsigned long)
 network to host conversion for long ints
unsigned short ntohs(unsigned short)
 network to host conversion for short ints

Big endian:
the highest order byte is stored at A
the lowest order byte is stored at address A+3.

Little endian:
the least significant byte is stored at A
the most significant byte is at address A+3.

Computer networks are big endian

Socket (3A) 8 Young Won Lim
11/22/2012

listen() and accept()

listen(sockfd,5);

5: the size of the backlog queue, i.e., the number
of connections that can be waiting while the
process is handling a particular connection.

struct sockaddr_in serv_addr, cli_addr;

clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);

The accept() system call causes the process
to block until a client connects to the server.
This wakes up the process when a connection from a client has been
successfully established.
It returns a new file descriptor, and all communication on this connection
should be done using the new file descriptor.

struct sockaddr_in serv_addr, cli_addr;

clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);

Socket (3A) 9 Young Won Lim
11/22/2012

read() & write()

bzero(buffer,256);
n = read(newsockfd,buffer,255);

n = write(newsockfd,"I got your message",18);

Socket (3A) 10 Young Won Lim
11/22/2012

Client Side Steps

● Create a socket with the socket() system call
● Connect the socket to the address of the server using the

connect() system call.
● Send and receive data

Socket (3A) 11 Young Won Lim
11/22/2012

hostent

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

struct sockaddr_in
{
 short in_family; /* must be AF_INET */
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8]; /* Not used, must be zero */
};

typedef uint32_t in_addr_t;
struct in_addr
{
 in_addr_t s_addr;
};

the IP address of the host. Server →
the IP address of the server machine
→ a symbolic constant INADDR_ANY

struct hostent
{
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
 #define h_addr h_addr_list[0] /* address, for backward compatiblity */
};

h_name Official name of the host.
h_aliases A zero terminated array of alternate

names for the host.
h_addrtype The type of address being returned;

C urrently always AF_INET.
h_length The length, in bytes, of the address.
h_addr_list A pointer to a list of network

addresses for the named host.
Host addresses are returned in
network byte order.

Socket (3A) 12 Young Won Lim
11/22/2012

gethostbyname()

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

struct hostent
{
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
 #define h_addr h_addr_list[0] /* address, for backward compatiblity */
};

server = gethostbyname(argv[1]);

struct hostent *gethostbyname(char *name)

Takes such a name as an argument and returns a
pointer to a hostent containing information about that
host.

The field char *h_addr contains the IP address.

Socket (3A) 13 Young Won Lim
11/22/2012

gethostbyname()

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

struct hostent
{
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
 #define h_addr h_addr_list[0] /* address, for backward compatiblity */
};

void bcopy(char *s1, char *s2, int length)

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;
bcopy((char *)server->h_addr, (char *)&serv_addr.sin_addr.s_addr, server->h_length);
serv_addr.sin_port = htons(portno);

struct sockaddr_in
{
 short in_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

typedef uint32_t in_addr_t;
struct in_addr
{
 in_addr_t s_addr;
};

Socket (3A) 14 Young Won Lim
11/22/2012

gethostbyname()

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

connect(sockfd, &serv_addr, sizeof(serv_addr))

bzero(buffer,256);
 fgets(buffer,255,stdin);

n = write(sockfd,buffer,strlen(buffer));

n = read(sockfd,buffer,255);

Socket (3A) 15 Young Won Lim
11/22/2012

Reference

References

[1] http://en.wikipedia.org/
[2] http://www.linuxhowtos.org/manpages/2/bind.htm
[3] http://cs.baylor.edu/~donahoo/practical/CSockets/textcode.html
[4] http://www.cs.rpi.edu/~moorthy/Courses/os98/Pgms/socket.html

http://en.wikipedia.org/
http://www.cs.rpi.edu/~moorthy/Courses/os98/Pgms/socket.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

