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Server Side Steps

● Create a socket with the socket() system call
● Bind the socket to an address using the bind() system call. For a 

server socket on the Internet, an address consists of a port number 
on the host machine.

● Listen for connections with the listen() system call
● Accept a connection with the accept() system call. This call 

typically blocks until a client connects with the server.
● Send and receive data
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sockaddr

int bind(int sockfd, const struct sockaddr *addr,socklen_t addrlen);int bind(int sockfd, const struct sockaddr *addr,socklen_t addrlen);

When a socket is created, 
it exists in a name space (address family) 
but has no address assigned to it. 
bind() assigns the address specified by addr 
to the socket referred to by sockfd. 
addrlen specifies the size, in bytes, 
of the address structure pointed to by addr. 

It is normally necessary to assign a local address using bind() 
before a SOCK_STREAM socket may receive connections 
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sockaddr

struct sockaddr {
    sa_family_t sa_family;
    char        sa_data[14];
}

AF_INET : ip
AF_INET6 : ipv6
AF_UNIX : unix
AF_APPLETALK : ddp
AF_PACKET : packet
AF_X25 : x25
AF_NETLINK : netlink

Bind the socket to an address
For a server socket on the Internet
an address - a port number on the host machine.

struct sockaddr {
    sa_family_t sa_family;
    char        sa_data[14];
}
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sockaddr_in

struct sockaddr_in
{
  short   in_family; /* must be AF_INET */
  u_short sin_port;
  struct  in_addr sin_addr;
  char    sin_zero[8]; /* Not used, must be zero */
};

typedef uint32_t in_addr_t;
struct in_addr
{
    in_addr_t s_addr;
};

struct sockaddr_in serv_addr, cli_addr;
bzero((char *) &serv_addr, sizeof(serv_addr));
/* sets all values in a buffer to zero */

int portno;
portno = atoi(argv[1]);

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(portno);
serv_addr.sin_addr.s_addr = INADDR_ANY;

bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr))

the IP address of the host. Server → 
the IP address of the server machine 
→ a symbolic constant INADDR_ANY
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Endian

unsigned long htonl(unsigned long)
   host to network conversion for long ints (4 bytes)
unsigned short htons(unsigned short)
   host to network conversion for short ints (2 bytes)
unsigned long ntohl(unsigned long)
   network to host conversion for long ints 
unsigned short ntohs(unsigned short)
   network to host conversion for short ints

Big endian:  
the highest order byte is stored at A
the lowest order byte is stored at address A+3. 

Little endian:
the least significant byte is stored at A
the most significant byte is at address A+3. 

Computer networks are big endian
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listen() and accept() 

listen(sockfd,5);

5: the size of the backlog queue, i.e., the number 
of connections that can be waiting while the 
process is handling a particular connection.

struct sockaddr_in serv_addr, cli_addr;

clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);

The accept() system call causes the process 
to block until a client connects to the server. 
This wakes up the process when a connection from a client has been 
successfully established. 
It returns a new file descriptor, and all communication on this connection 
should be done using the new file descriptor.

struct sockaddr_in serv_addr, cli_addr;

clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
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read() & write()

bzero(buffer,256);
n = read(newsockfd,buffer,255);

n = write(newsockfd,"I got your message",18);
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Client Side Steps

● Create a socket with the socket() system call
● Connect the socket to the address of the server using the 

connect() system call.
● Send and receive data
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hostent

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

struct sockaddr_in
{
  short   in_family; /* must be AF_INET */
  u_short sin_port;
  struct  in_addr sin_addr;
  char    sin_zero[8]; /* Not used, must be zero */
};

typedef uint32_t in_addr_t;
struct in_addr
{
    in_addr_t s_addr;
};

the IP address of the host. Server → 
the IP address of the server machine 
→ a symbolic constant INADDR_ANY

struct  hostent
{
  char    *h_name;        /* official name of host */
  char    **h_aliases;    /* alias list */
  int     h_addrtype;     /* host address type */
  int     h_length;       /* length of address */
  char    **h_addr_list;  /* list of addresses from name server */
  #define h_addr  h_addr_list[0]  /* address, for backward compatiblity */
};

h_name    Official name of the host.
h_aliases   A zero  terminated  array  of  alternate

names for the host.
h_addrtype   The  type  of  address  being returned; 

C urrently always AF_INET.
h_length     The length, in bytes, of the address.
h_addr_list  A pointer to a list of network 

addresses for the named host.  
Host addresses are returned in 
network byte order.
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gethostbyname()

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

struct  hostent
{
  char    *h_name;        /* official name of host */
  char    **h_aliases;    /* alias list */
  int     h_addrtype;     /* host address type */
  int     h_length;       /* length of address */
  char    **h_addr_list;  /* list of addresses from name server */
  #define h_addr  h_addr_list[0]  /* address, for backward compatiblity */
};

server = gethostbyname(argv[1]);

struct hostent *gethostbyname(char *name)

Takes such a name as an argument and returns a 
pointer to a hostent containing information about that 
host.

The field char *h_addr contains the IP address.
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gethostbyname()

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

struct  hostent
{
  char    *h_name;        /* official name of host */
  char    **h_aliases;    /* alias list */
  int     h_addrtype;     /* host address type */
  int     h_length;       /* length of address */
  char    **h_addr_list;  /* list of addresses from name server */
  #define h_addr  h_addr_list[0]  /* address, for backward compatiblity */
};

void bcopy(char *s1, char *s2, int length)

bzero((char *) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;
bcopy((char *)server->h_addr, (char *)&serv_addr.sin_addr.s_addr, server->h_length);
serv_addr.sin_port = htons(portno);

struct sockaddr_in
{
  short   in_family; 
  u_short sin_port;
  struct  in_addr sin_addr;
  char    sin_zero[8]; 
};

typedef uint32_t in_addr_t;
struct in_addr
{
    in_addr_t s_addr;
};
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gethostbyname()

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;

connect(sockfd, &serv_addr, sizeof(serv_addr))

bzero(buffer,256);
 fgets(buffer,255,stdin);
 
n = write(sockfd,buffer,strlen(buffer));

n = read(sockfd,buffer,255);
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Reference
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