A Sudoku Solver - Specifications (1A)

* Richard Bird Implementation

Young Won Lim
4/26/17

Copyright (c) 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

Young Won Lim
4/26/17

mailto:youngwlim@hotmail.com

Based on

Thinking Functionally with Haskell, R. Bird

https://wiki.haskell.org/Sudoku
http://cdsoft.fr/haskell/sudoku.html
https://gist.github.com/wvandyk/3638996

http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

Bird’::; _Suo!oku 3 Young Won Lim
Specifications (1A) 4/26/17

https://wiki.haskell.org/Sudoku
http://cdsoft.fr/haskell/sudoku.html
https://gist.github.com/wvandyk/3638996
http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

Basic Data Types

type Choices = [Digit]

type Matrix a = [Row 4] [[a]]
type Rowa =|[a]

type Grid = Matrix Digit [[Digit]] 9x9 matrix of digits
type Digit = Char

digits :: [Digit] The valid digits are ‘1'to ‘9’

digits = ['1'..'9'] A list of non-zero characters
(‘1’to ‘9))

blank :: Digit -> Bool ‘0’ standing for blank

blank = (=='0"

Bird’s Sudoku

-) 4 Young Won Lim
Specifications (1A)

4/26/17

Matrix pigit & Matrix choices

type Digit = Char
type Choices = [Digif]
type Row a = |[4q]
type Matrix a = [Row a]
Matrix Digit = [Row Digit] [[Digit]]
Matrix [Digit] = [Row [Digit]] [[[Digit]]]
Matrix Choices = [Row Choices] [[Choices]] [[[Digit]]]
type Grid = Matrix Digit [Row Digit] [[Digit]]
Bird’s Sudoku Young Won Lim
Specifications (1A) 5 4/26/17

Sudoku

4 517 [['O, 0, ‘4, 0,0, 7,0, ‘0],

[0, ‘0,0, ‘0, 0, "9, ‘4, 'O, 'O],

8 [‘3, 6,0, 0, 0,0, 0, 0, 8],

p 6 |7, 2,4, 0, '6’, ‘0, ‘0, ‘0, ‘0’],

4 2 [0, 0, ‘0,4, 0,2, 0,0, ‘0],

8 9 3 [0, ‘0, 0, ‘0, '8, ‘0, 0, 97, 3],

4 5 6 [‘4,'0, ‘0,0, ‘0,0, 0,5, '6],
513 [0, ‘0,5, ‘3, ‘0, ‘0, ‘0", ‘0, ‘O],
1 9 [0, 0, ‘6,1, ‘0,0,'9,0, 0]

type Grid = Matrix Digit [Row Digit] [[Digit]]

Haskell Overview 6 Young Vl/lc/>£16l7i1n71

Specification (0)

solvel : Grid -> [Grid]
choices :: Grid -> Matrix Choices
expand :: Matrix Choices -> [Grid]
cp $ [all > [[a]]
valid : Grid -> Bool
nodups rEgqa=> [a] -> Bool
rows :: Matrix a -> [Row a]
cols - Matrix a -> [Row a]
boxs :: Matrix a -> [Row a]
uhgroup = concat

group [] =1l

group (x:y:z:xs) = [x,y,z] : group xs

Bird’s_; _Suo!oku 7 Young Won Lim
Specifications (1A) 4/26/17

Function Types : choices, expand

solvel Grid > [Grid]
Matrix Digit [Matrix Digit]
choices Grid -> Matrix Choices
Matrix Digit Matrix [Digit]
expand Matrix Choices -> [Grid]
Matrix [Digit] [Matrix Digit]
type Digit = Char
type Choices = [Digit]
type Row a = [a]
type Matrix a = [Row a]
Matrix Digit [Row Digit] [[Digit]]
Matrix Choices [Row Choices] [[Choices]] [[[Digit]]]
type Grid = Matrix Digit [Row Digit] [[Digit]]
Bird’s Sudoku Young Won Lim
Specifications (1A) 8 4/26/17

Function completions

solve :: Grid -> [Grid]
solve =filter valid . completions

completions :: Grid -> [Grid]
valid :: Grid -> Bool

completions = expand . choices

[Grid] Matrix Choices Grid
expand choices
[Matrix Digit] Matrix [Digit] Matrix Digit

Bird’s Sudoku

-) 9 Young Won Lim
Specifications (1A)

4/26/17

Function: choices

choices :: Grid -> Matrix Choices digits :: [Digit]
choices = map (map choice) digits = [1'..'97]
where choiced |blankd = digits blank :: Digit -> Bool
| otherwise = [d] blank = (=="0’)

choices :: Grid -> Matrix [Digit]
choices = map (map choice)
choiced =if blankd then digits else [d]

Installs the available digits for each cell
If the cell is blank, then all digits for possible choices
else there is only one choice and a singleton is returned

Matrix Choices Grid

choices
Matrix [Digit] Matrix Digit

Bird’s Sudoku 10 Young Won Lim
Specifications (1A) 4/26/17

Function: choices

map (map choice)

choices

map choice

choice ‘0 —['1'..'9"]

]

, —-,~—, ., ~/, 1,

[[‘O, 0,4, 0, 0,5, 7, 0,0

‘0’, ‘0, ‘0’, ‘0, ‘0', ‘9, ‘4’, ‘0, ‘0’
3, '6’, ‘0", ‘0, ‘0’, ‘0", ‘0, ‘0, ‘8’
7, 2,4, 0%, '6’, ‘0, ‘0, ‘0, ‘0’
‘0, ‘0, ‘0, ‘4, ‘0, ‘2, 0, ‘0, O
‘0, ‘0, ‘0%, ‘0, '8, ‘0, ‘0, 9, ‘3
‘4','0', ‘0%, ‘0, ‘0’, ‘0, 0, 5, ‘6
‘0, ‘0, ‘5, '3, ‘0, ‘0%, ‘0, ‘0, O
‘0, ‘0, ‘'6’, ‘1, ‘'0’, ‘0%, 19, ‘0, O’

e e e) ed) ed eed

l

(@210y9o dew) dew

Young Won Lim

4/26/17

11

Haskell Overview

Matrix Choices Example

[[[1.097, 1.9, ['4], U9 9 9 [T, [1..97, [1°..9']],
[[[1.09], 109, 1.9, 1009, 1.9, 91, ['4], ['1..97, [1"..97]],

[[3] [6],
L[] 2],
[[1.097,[1..
[[1.09], [1..
[[47 [T

[[1.797], [1..
971,161, [, 109 [1.09L 91, [1.091,[1.0971]

[[1..97, ['1..

[1.097, [1.)97], [1..97, [1.)97], [1..9], [1..97], [8] 1,
(4, [1.09,[6], [1.097,[1.09], [1.097, [1.91],
o], [1.°97, [4], [1.'91[21 [1.”9],[1.'97, [1./97],

91, (1.9, (109, 18], [0 (1091, 19, 3],
O, (109, [1.09, [0, [1.097, [109 5], 6]],

9, ['57], ['3], ['1..97, ['1..9°], ['1°..97], [2°..'97], ['1"..97]],

Matrix Choices = [Row Choices] [[Choices |] [[Digit] 1]

Haskell Overview

1 2 Young Won Lim
4/26/17

Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]
[[1, 2, 3] x [2] x [1, 3]]

[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

cp[]=1[[]]
cp [[1], (2], [3]] =>[1, 2, 3]]

cp [[1]. [] [4,3]] =>1]

Bird’::; _Suo!oku 13 Young Won Lim
Specifications (1A) 4/26/17

Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]]

1,2, 1], [1,2,3],[2,2,1],[2, 2, 3], [3, 2, 1], [3, 2, 3]]

cp [[2] [1. 3]] = [[2, 1], [2, 3]

cp ([1, 2, 3]« [[2], [t 3]]) = [[1, 2, 1}, [1, 2, 3],
2,2,1],[2, 2, 3],
3,2,1],[3, 2, 3]]

[1. 2, 3] xep 2], [1, 31 =[1, 2, 3] x [[2, 1], [2, 3]]

list comprehension
cp (xs:xss) = [X:iys | X <- xS, yS <- Cp XSS]

Bird’s_; _Suo!oku 14 Young Won Lim
Specifications (1A) 4/26/17

Cartesian Product (cp)

cp (xs:xss) = [xiys | X <- xS, Vs <- cp XSS]

cp (xs:xss) = [x:ys | X <- XS, ys <- ySS]
where yss = cp XSS

cp [xs]=cp (x:[])
=[xiys|x<-xs,ys<-ep[]] ifep[]=]]
= [xys [x<-xs,ys<-[]]
=[] contradict

cp[]=][] resultsincpxss=[] therefore cp[l=[[]]

Bird’s_; _Suo!oku 15 Young Won Lim
Specifications (1A) 4/26/17

Expand

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

cp.mapcp = [[[a]] | ->[[[a]]]

digits :: [Digit]

digits = ['1'..'9"]
blank :: Digit -> Bool
blank = (=='0")

[Grid] Matrix Choices
expand
[Matrix Digit] Matrix [Digit]
Bird’s Sudoku Young Won Lim
Specifications (1A) 16 4/26/17

Expand Operations

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

map cp

[[1..97, [1..97], ['1..97], ['1'..'97], [[1°..9°], ['9], ['4], [1..9], ['1"..97],
[[37], ['6’], [21..9],[71./9], [1.97, ['1..97, [1..9°], ['1"..9'], ['8] 1,
[[7], ['27], [4], ['1..9], ['6], ['1..97,[21..97,[71..97], ['1..97],
[[1..97], [1..97], ['1..'97], ['4], ['1..9], ['27], [1..97,[1..97], [1..9]],
[[1..97, [1..97], ['1..97], ['1'..97, ['87], 1.9, [12..9°], ['97], [3]],
[[4], [1..97, [1..97], ['1"..9°], ['1'..9°], ['1'..97], ['1..'9], [[57], ['6]],
[[1..97, [1..97], ['5], ['37], [1..97, ['1..97, ['1'..97], ['1°..’9°], ['1"..'97]],
[[1..97, [1..97], 6], [‘17], [1..9], ['1..97], ['97], [1..9], ['1..97]]]

cp (map cp)

Haskell Overview 1 7 Young Vyl(/);6l7i1n71

Matrix Choices Example

expand :: Matrix Choices -> [Grid]
expand =cp . map cp

97, ['47], [1..9], ['1"..’9],

97, [1..97], [1..97], [8],

G O CONE L TIN CE TNN i TL..9T1, 5], [6] "1
N S e |
N S

cp [[4],

cp [[1, 2, 3], [2], [1, 3]
1,2, 1], [1,2,3],[2,2 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

Haskell Overview 1 8 Young Vlll(/)£6l7i1n71

Matrix Choices Example

expand :: Matrix Choices -> [Grid]
expand =cp . map cp

[[[,], (O], e e o
i AC O AC T EEE
| [——],], e e 1
giC ¢ AC % AC EEER]
[[], [], [.] coe]
[[, [], [S—], Soc)
[[) [], [.] coo 1

]

]

[[-:-]1[-:-]1 [-:-]1 00
[[-:-]1[-:-]1 [-:-]1 00

cp [[1, 2, 3], [2], [1, 3]
1,2, 1], [1,2,3],[2,2 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

Haskell Overview 1 9 Young Vyl(/);6l7i1n71

[Grid]

| o o ——— ————
O S S W T T —

type Grid =
Matrix Digit
[Row Digit]
[[Digit]]

9 elements
per each row

9 rows

Bird’::; _Suo!oku 20 Young Won Lim
Specifications (1A) 4/26/17

Expand

> solvel :: Grid -> [Grid]
> solvel = filter valid . expand . choices

> type Choices = [Digit]

> choices :: Grid -> Matrix Choices
> choices = map (map choice)

> where choice d | blank d = digits digits :: [Digit]

> | otherwise = [d] digits = [1..'97
blank :: Digit -> Bool

> expand :: Matrix Choices -> [Grid] blank = (=="0)

> expand = cp . map cp

>cp ::[[a]] -> [[a]]
>cepll =l

> cp (XS:XSS) = [XiyS | X <- XS, YS <- Cp XSS]

Bird’g _Sud_oku 21 Young Won Lim
Specifications (1A) 4/26/17

Specification (1)

solvel :: Grid -> [Grid]
solvel = filter valid . expand . choices

type Choices = [Digit]

choices :: Grid -> Matrix Choices
choices = map (map choice)

where choice d | blank d = digits digits :: [Digit]
| otherwise = [d] digits = [1..'97
blank :: Digit -> Bool
expand :: Matrix Choices -> [Grid] blank = (=="0)

expand = cp . map cp

cp :: [[a]] -> [[a]]
cpll =l

cp (xs:xss) = [X:ys | X <- XS, YyS <- Cp XSS]

Bird’s Sudoku

> ' 2 2 Young Won Lim
Specifications (1A)

4/26/17

Specification (2)

valid :: Grid -> Bool

valid g = all nodups (rows Q) &&
all nodups (cols g) &&
all nodups (boxs Q)

nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = X notElem” xs && nodups xs

[(T A L & N ([],) \
L B INE EEes CEE]. | EEes EE]. | (XX XX
W= 1y L= 9 ([[PEEes EE].)

. P

g Grid = Matrix Digit

[Row Digit]

[[Digit]]

Bird’s_; _Suo!oku 23 Young Won Lim
Specifications (1A) 4/26/17

Specification (3)

rows :: Matrix a -> [Row a]
rows = id

cols :: Matrix a -> [Row a]
cols [xs] =[[X] | X <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

boxs :: Matrix a -> [Row a]

boxs = map ungroup . ungroup .
map cols .
group . map group

Bird’s_; _Suo!oku 24 Young Won Lim
Specifications (1A) 4/26/17

group and ungroup

ungroup = concat

group [] = I
group (xX:y:z:xs) [X,Y,z] : group xs

[X,Y,z,xs] == [[X, YV, z], group xs]

Bird’s Sudoku

> ' 2 5 Young Won Lim
Specifications (1A)

4/26/17

rows and cols

type Matrix a = [Row a] [[a]]
type Rowa =[aq]

rows ;. Matrix a -> [Row a]

rows . Matrix a -> Matrix a

rows = id id : identity function
If a matrix is given by a list of its rows
tt returns the same matrix

cols :: Matrix a -> [Row a]
cols .. Matrix a -> Matrix a
cols [xs] =[[X] | X <- xs]

cols (xs:xss) = zipWith (:) xs (cols xss)

transpose of a matrix

Bird’s_; _Suo!oku 26 Young Won Lim
Specifications (1A) 4/26/17

cols

cols :: Matrix a -> [Row a]
cols . Matrix a -> Matrix a
cols [xs] =[[X]| X <- xs]

cols (xs:xss) = zipWith (:) xs (cols xss)

[FoEn] []\

i

e,

Bird’::; _Suo!oku 27 Young Won Lim
Specifications (1A) 4/26/17

boxs

type Matrix a = [Row a] [[a]]

boxs :: Matrix a -> [Row a] type Rowa = [a]
boxs :: Matrix a -> Matrix a
boxs = map ungroup .

ungroup .

map cols .

group .

map group
ungroup :: [[a]] -> [a]
ungroup = concat takes a grouped list and ungroups it

group |] =l
group (X:y:z:xs) = [X,y,z]:group Xxs splits a list into groups of three
group xs = take 3 xs : group (drop 3 xs)

Bird’g _Sud_oku 28 Young Won Lim
Specifications (1A) 4/26/17

group.map group

map group

[['5, '3, 4,6, ‘7, ‘8, ‘9,1, 2], [[[[5, ‘3, ‘4], ['6, ‘7, ‘8], ['9, ‘1, 2],
[‘6’, ‘7", 2,1, '9, ', ‘3,4, ‘8], [['6’, ‘7, 2], ['1,'9, '5'], ['3, ‘4, ‘8]],
[‘1, 9", '8, '3, ‘4, '2,'5,'6', ‘7], [['1, ‘9, ‘8], ['3, ‘4, ‘2], ['5, ‘6, ‘T']]],
[‘8", 5, 9,7, 6,1, '4, 2, ‘3] (e, s, 9l 7, e, 1] [4, 2, 3],
[‘4", 2", '6",'8", ', '3, '7,'9, ‘1] o [['4', ‘2’, ‘6’], '8, ‘5, ‘3], ['T", ‘9, ‘1]],
[‘7", 1, ‘3,'9,'2",'4,'8,'5, '6’] 5 [['7, 1, ‘3], ['9, ‘2, 4], '8, ‘5, ‘6]]],
[‘9%, ‘6", ‘1", ‘5, ‘3, ‘7", ‘2, '8, ‘4’] 2 (e, e, ‘1, 5, 3, 7] [2, 8, ‘47],
[2", 8,7, '4,'1,'9,'6, ‘3, ‘5], [['2', 8, ‘7], ['4, ‘1,9, 6, ‘3, ‘5],
[3",‘4,'5,'2",'8,'6, 'L, '7,'9]] [['3, 4,5, ['2, '8, '6'], ['1", ‘7", ‘9]]]]

type Grid = Matrix Digit [Row Digit] [[Digit]]
Haskell Overview 29 Young Vl/lc/>£16l7i1n71

map cols. group . map group

[[[[5,'3, 4,16, 7,81, [9,1, 211, [[1[5,', 4], [6, 7, 2] [TFee]l,
[['6, ‘7, 2], ['1, 9, ‘5], ['3, ‘4, '8]], [['6), ‘7, ‘8], [1, 9, 5], [3, 4, 2]],
(EENSTSIESIZNZNENeNTN . (9,1, 21,[3, 4, 8], (5,671,

[[[®, 5,91 [7,'6, 1], [4,2,31], [[[8,5, 9 [4, 2, 6] [FFTEs]]
[['4, 2, ‘6], '8, 5", ‘3], ['7", ‘9, ‘'I']], [[7, 6, ‘1], [8, ‘5, 3], [9, 2, 4]],
N7ZRLNSIeN2aanIeNsuel . [[4,2,31,[7,'9, 1], [8,/5,61]],

[[[9,'6, 1], [5, '3, 71 [2,'8, 411, [[[9 6, 1], [2, 8, 7], [3F4Ns]),
[[2", ‘8, ‘7], ['4, 1", ‘9, ['6", ‘3, ‘5]], [[5, ‘3, 7], ['4, ‘1, ‘9, [2, 8, 6]],
SIZNSIZESNENITITIgn 11 [[2,®,'4],[6,'3, 5], 7911 1]
type Grid = Matrix Digit [Row Digit] [[Digit]]

Haskell Overview 30 Young Vl/lc/>£16l7i1n71

ungroup . map cols . group . map group

ungroup

(L[5, 3,4, [6, 7, 2], [1,'9, 811, [[[5,°3 4][6, 7 2],[1,9, 8]]
[[6, 7, 8], [71, 9, 5], [3, 4, 2]], [['6, 7, 8] [1, 9,5 [3, 4, 27],
[[9" 1, 2], [3, 4", '8, ['5, 6, ‘T]], [[9' 1, 2], [3,'4, 8], [5', '8, T1] ,
[[[8, 5, 9] [4) 2,67 [7, 1, 3]], (185", ‘9, [4), 2,61, [T, 1, 3]]
[[7, 6, ‘1], [8, 5, 3], [9, 2, ‘47], [[7, 6", ‘1], ['8, 5, 3], [9, 2, ‘4]],
[[4, 2, 3], [7" 9", ‘1], [8, 5, 6]], [[4.2,3],[7,9, 17, (8,5, ®]] ,
[[[9' 6, 1] [2,'8, 7], [3, 4" '5]] (196, 1), [2, '8, 7], [3, 4", 5]]
[['5, 3, ‘7], ['4, ‘1, ‘9], [2), ‘8, ‘67]], [['5, '3, 7], ['4, 1,9, [2, ‘8, 67],
[[2.°8" 4], [6,'3, 51, [T, ‘7. '9111] [[2.'8,4].[6,'3, 5], [1,'7,9]] |
type Grid = Matrix Digit [Row Digit] [[Digit]]

Haskell Overview 3 1 Young Vyl(/);6l7i1n71

map ungroup . ungroup . map cols . group . map group

map ungroup

[[[5, 3, 4], [6, 7, 2] [1, 9, ‘8]], [[5,34, 6,7, 2, 19 '8]
[[6, 7, 8] [1, 9, 5] [3, 4, 21]], [‘6", 7,8, 195, 3 4 2]
[[9, 71, 2] [3,4,'8][5, 6, 7]] , [9, 1,2, ‘3,48, '5,'6", 7T]
[[8, 5, 91, ['4, 2, 6] [7, 1, 3] ['8,5,'9, 4 2,6, 7, '1, 3]
[[7, 6", ‘1], ['8, ‘5, ‘3], [9, ‘2, '4']], [777,61, '8,%5,'3, 9, 2, 4]
[[4,2,3],[7,'9, 1] [8, 5, ‘6]], [42,3, '7,'9,'1, '8,5,'6"]
[[9, 6", ‘1], [2, 8, ‘7], [3, ‘4, ‘'51]], [‘9, '6, 1, 27,8, 7, 34 5]
[[5, 3, 7], ['4,71, 9] [2, 8, '61]], [5,3, 7, 4, 1,9, 2,'8,6],
[[2, 8, ‘4], [6, 3, 5], ['1, 7, 91]] [2°,'8,4, 6", 3,5, '1',7,'9]]
type Grid = Matrix Digit [Row Digit] [[Digit]]

Haskell Overview 32 Young Won Lim

4/26/17

boxs

group

map group

Tleol—| o
ol x| 0
O 4| =]
S|l —| &
Tlc|l—| o
o|lo|x|o
O 4= | =]
S|lo|=| &
T £ - o
O ODx O
O 4= =
® o — £

map cols

ungroup

map ungroup

Young Won Lim

a ble f

c d{ig h
' m
o

a ble f

c d{(g h
' m
o

b e f

(1)

s Cc Qo
o & O
" = J I
O = X

Bird’s Sudoku

4/26/17

33

Specifications (1A)

boxs

abcd bOXS a b e f

e f g h c d g h

I jJ k | I j m n

mn o p k | o p

ab bOXS a b e f

 f cdgh

i jJ k | i] mn

mn o p k | o
Bird’s Sudoku Young Won Lim
Specifications (1A) 34 4/26/17

cols

a b c d cols a e i m

e f g h b f j n

I] k | c g ko

mn o p d h | p

a c d cols a e i m

e g h

i k | c g ko

m op d h I p
Bird’s Sudok ! i
pecifications 35 roung Y

Specifications (1A)

rows, cols, boxs

‘abcd\ (OWS a b c d
1 Kk)

I I I jJ k |
m n p mn o p
cols
I J m n
m n|o p k | o p
Bird’s Sudoku Young Won Lim
Specifications (1A) 36 4/26/17

nodups

nodups :: (Eqa)=> [a] -> Bool
nodups [] = True
nodups (x:xs) =X notElem xs && nodups xs

notElem :: (Eq a) => a-> [a] -> Bool
notElem xxs =all (/=x) xs

allp=and . map p

nodups :: (Eqa) => [a] -> Bool
nodups |] = True
nodups (x:xs) = all (/=x) xs && nodups xs

allp=and . mapp

Bird’s Sudoku
Specifications (1A) 37

Young Won Lim
4/26/17

nodups

[‘6, ‘7, 2, ‘1,
‘e, [T, 2, ‘1,
‘6, ‘7, [2, ‘1,
‘6, ‘7, 2,[1,

‘6, ‘7, ‘2,

‘6, ‘7, 2, 1,

‘61’ l71’ l27’ ‘17’

l91,

l91’

I51’

I51’

I5l’

nodups (X:xs) =
X notElem” xs && nodups xs
notElem xxs =all (/=x) xs

allp=and . mapp

Bird’s Sudoku
Specifications (1A)

Young Won Lim
4/26/17

nodups

['6, 7, 2, ‘I, ‘9, ‘5, ‘3, 4, ‘8] nodups (xxs) =
X notElem” xs && nodups xs
‘e, ‘7, ‘2, ‘I, ‘9, ‘5 ['3, ‘4, ‘8]
notElem xxs =all (/=x) xs
allp=and . map p

‘', ‘7, ‘27, ‘I, ‘9, ‘5, ‘3, ‘4 [8]

l61’ (71’ (21, ‘11’ ‘91’ ‘51’ l31’ (41’ (81 []

Bird’s Sudoku

> ' 39 Young Won Lim
Specifications (1A)

4/26/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

Young Won Lim
4/26/17

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

