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Basic Data Types

type Choices = [Digit]

type Matrix a = [Row 4] [[a]]
type Rowa =|[a]

type Grid = Matrix Digit [ [Digit] ] 9x9 matrix of digits
type Digit = Char

digits :: [Digit] The valid digits are ‘1'to ‘9’

digits = ['1'..'9'] A list of non-zero characters
(‘1’to ‘9))

blank :: Digit -> Bool ‘0’ standing for blank

blank = (=='0"
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Matrix pigit & Matrix choices

type Digit = Char
type Choices = [Digif]
type Row a = |[4q]
type Matrix a = [Row a]
Matrix Digit = [Row Digit] [[Digit]]
Matrix [Digit] = [Row [Digit]] [[[Digit]]]
Matrix Choices = [Row Choices] [[Choices]] [[[Digit]]]
type Grid = Matrix Digit [Row Digit] [[Digit]]
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Sudoku

4 517 [['O, 0, ‘4, 0,0, 7,0, ‘0],

[0, ‘0,0, ‘0, 0, "9, ‘4, 'O, 'O ],

8 [‘3, 6,0, 0, 0,0, 0, 0, 8],

p 6 |7, 2,4, 0, '6’, ‘0, ‘0, ‘0, ‘0’ ],

4 2 [0, 0, ‘0,4, 0,2, 0,0, ‘0],

8 9 3 [0, ‘0, 0, ‘0, '8, ‘0, 0, 97, 3],

4 5 6 [‘4,'0, ‘0,0, ‘0,0, 0,5, '6],
513 [0, ‘0,5, ‘3, ‘0, ‘0, ‘0", ‘0, ‘O],
1 9 [0, 0, ‘6,1, ‘0,0,'9,0, 0]

type Grid =  Matrix Digit [Row Digit] [[Digit]]
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Specification (0)

solvel : Grid -> [Grid]
choices :: Grid -> Matrix Choices
expand :: Matrix Choices -> [Grid]
cp $ [all > [[a]]
valid : Grid -> Bool
nodups rEgqa=> [a] -> Bool
rows :: Matrix a -> [Row a]
cols - Matrix a -> [Row a]
boxs :: Matrix a -> [Row a]
uhgroup = concat

group [] =1l

group (x:y:z:xs) = [x,y,z] : group xs
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Function Types : choices, expand

solvel Grid > [Grid]
Matrix Digit [Matrix Digit]
choices Grid -> Matrix Choices
Matrix Digit Matrix [Digit]
expand Matrix Choices -> [Grid]
Matrix [Digit] [Matrix Digit]
type Digit = Char
type Choices = [Digit]
type Row a = [a]
type Matrix a = [Row a]
Matrix Digit [Row Digit] [[Digit]]
Matrix Choices [Row Choices] [[Choices]] [[[Digit]]]
type Grid = Matrix Digit [Row Digit] [[Digit]]
Bird’s Sudoku Young Won Lim
Specifications (1A) 8 4/26/17



Function completions

solve :: Grid -> [Grid]
solve =filter valid . completions

completions :: Grid -> [Grid]
valid :: Grid -> Bool

completions = expand . choices

[Grid] Matrix Choices Grid
expand choices
[Matrix Digit] Matrix [Digit] Matrix Digit
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Function: choices

choices :: Grid -> Matrix Choices digits :: [Digit]
choices = map (map choice) digits = [1'..'97]
where choiced |blankd = digits blank :: Digit -> Bool
| otherwise = [d] blank = (=="0’)

choices :: Grid -> Matrix [Digit]
choices = map (map choice)
choiced =if blankd then digits  else [d]

Installs the available digits for each cell
If the cell is blank, then all digits for possible choices
else there is only one choice and a singleton is returned

Matrix Choices Grid

choices
Matrix [Digit] Matrix Digit
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Function: choices

map (map choice)

choices

map choice

choice ‘0 —['1'..'9"]

]

_, —-,~_—, ., ~/, 1,

[[‘O, 0,4, 0, 0,5, 7, 0,0

‘0’, ‘0, ‘0’, ‘0, ‘0', ‘9, ‘4’, ‘0, ‘0’
3, '6’, ‘0", ‘0, ‘0’, ‘0", ‘0, ‘0, ‘8’
7, 2,4, 0%, '6’, ‘0, ‘0, ‘0, ‘0’
‘0, ‘0, ‘0, ‘4, ‘0, ‘2, 0, ‘0, O
‘0, ‘0, ‘0%, ‘0, '8, ‘0, ‘0, 9, ‘3
‘4','0', ‘0%, ‘0, ‘0’, ‘0, 0, 5, ‘6
‘0, ‘0, ‘5, '3, ‘0, ‘0%, ‘0, ‘0, O
‘0, ‘0, ‘'6’, ‘1, ‘'0’, ‘0%, 19, ‘0, O’

e e e ) ed ) ed eed

l

(@210y9o dew) dew
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Matrix Choices Example

[[[1.097, 1.9, ['4], U9 9 9 [T, [1..97, [1°..9'] ],
[[[1.09], 109, 1.9, 1009, 1.9, 91, ['4], ['1..97, [1"..97] ],

[[3]  [6],
L[] 2],
[[1.097,[1..
[[1.09], [1..
[[47 [T

[[1.797], [1..
971,161, [, 109 [1.09L 91, [1.091,[1.0971]

[[1..97, ['1..

[1.097, [1.)97], [1..97, [1.)97], [1..9], [1..97], [8] 1,
(4,  [1.09,[6], [1.097,[1.09], [1.097, [1.91],
o], [1.°97, [4], [1.'91[21 [1.”9],[1.'97, [1./97],

91, (1.9, (109, 18], [0 (1091, 19, 3],
O, (109, [1.09, [0, [1.097, [109 5], 6] ],

9, ['57], ['3], ['1..97, ['1..9°], ['1°..97], [2°..'97], ['1"..97] ],

Matrix Choices = [Row Choices] [[ Choices |] [ [Digit] 1]
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Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]
[[1, 2, 3] x [2] x [1, 3]]

[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

cp[]=1[[]]
cp [[1], (2], [3]] =>[1, 2, 3]]

cp [[1]. [] [4,3]] =>1]
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Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]]

1,2, 1], [1,2,3],[2,2,1],[2, 2, 3], [3, 2, 1], [3, 2, 3]]

cp [[2] [1. 3]] = [[2, 1], [2, 3]

cp ([1, 2, 3]« [[2], [t 3]]) = [[1, 2, 1}, [1, 2, 3],
2,2,1],[2, 2, 3],
3,2,1],[3, 2, 3]]

[1. 2, 3] xep 2], [1, 31 =[1, 2, 3] x [[2, 1], [2, 3]]

list comprehension
cp (xs:xss) = [X:iys | X <- xS, yS <- Cp XSS]

Bird’s_; _Suo!oku 14 Young Won Lim
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Cartesian Product (cp)

cp (xs:xss) = [xiys | X <- xS, Vs <- cp XSS]

cp (xs:xss) = [x:ys | X <- XS, ys <- ySS]
where yss = cp XSS

cp [xs]=cp (x:[])
=[xiys|x<-xs,ys<-ep[]] ifep[]=]]
= [xys [ x<-xs,ys<-[]]
=[] contradict

cp[]=][] resultsincpxss=[] therefore cp[l=[[]]
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Expand

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

cp.mapcp = [[[a]] | ->[[[a]] ]

digits :: [Digit]

digits = ['1'..'9"]
blank :: Digit -> Bool
blank = (=='0")

[Grid] Matrix Choices
expand
[Matrix Digit] Matrix [Digit]
Bird’s Sudoku Young Won Lim
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Expand Operations

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

map cp

[[1..97, [1..97], ['1..97], ['1'..'97], [[1°..9°], ['9], ['4], [1..9], ['1"..97 ],
[ [37], ['6’], [21..9],[71./9], [1.97, ['1..97, [1..9°], ['1"..9'], ['8] 1,
[[7], ['27], [4], ['1..9], ['6], ['1..97,[21..97,[71..97], ['1..97],
[[1..97], [1..97], ['1..'97], ['4], ['1..9], ['27], [1..97,[1..97], [1..9]],
[[1..97, [1..97], ['1..97], ['1'..97, ['87], 1.9, [12..9°], ['97], [3] ],
[ [4], [1..97, [1..97], ['1"..9°], ['1'..9°], ['1'..97], ['1..'9], [[57], ['6] ],
[[1..97, [1..97], ['5], ['37], [1..97, ['1..97, ['1'..97], ['1°..’9°], ['1"..'97] ],
[[1..97, [1..97], 6], [‘17], [1..9], ['1..97], ['97], [1..9], ['1..97] ] ]

cp (map cp)

Haskell Overview 1 7 Young Vyl(/);6l7i1n71



Matrix Choices Example

expand :: Matrix Choices -> [Grid]
expand =cp . map cp

97, ['47], [1..9], ['1"..’9],

97, [1..97], [1..97], [8],

G O CONE L TIN CE TNN i TL..9T1, 5], [6] "1
N S e |
N S

cp [[4],

cp [[1, 2, 3], [2], [1, 3]
1,2, 1], [1,2,3],[2,2 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

Haskell Overview 1 8 Young Vlll(/)£6l7i1n71



Matrix Choices Example

expand :: Matrix Choices -> [Grid]
expand =cp . map cp

[ [ [, ], (O], e e o
i AC O AC T EEE
| [—— ], ], e e 1
giC ¢ AC % AC EEER]
[ [ ], [ ], [ .] coe ]
[ [, [ ], [S—], Soc )
[ [ ) [ ], [ .] coo 1

]

]

[ [-:-]1[-:-]1 [-:-]1 00
[ [-:-]1[-:-]1 [-:-]1 00

cp [[1, 2, 3], [2], [1, 3]
1,2, 1], [1,2,3],[2,2 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]
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[Grid]

| o o ——— ————
O S S W T T —

type Grid =
Matrix Digit
[Row Digit]
[[Digit]]

9 elements
per each row

9 rows
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Expand

> solvel :: Grid -> [Grid]
> solvel = filter valid . expand . choices

> type Choices = [Digit]

> choices :: Grid -> Matrix Choices
> choices = map (map choice)

> where choice d | blank d = digits digits :: [Digit]

> | otherwise = [d] digits = [1..'97
blank :: Digit -> Bool

> expand :: Matrix Choices -> [Grid] blank = (=="0)

> expand = cp . map cp

>cp ::[[a]] -> [[a]]
>cepll =l

> cp (XS:XSS) = [XiyS | X <- XS, YS <- Cp XSS]

Bird’g _Sud_oku 21 Young Won Lim
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Specification (1)

solvel :: Grid -> [Grid]
solvel = filter valid . expand . choices

type Choices = [Digit]

choices :: Grid -> Matrix Choices
choices = map (map choice)

where choice d | blank d = digits digits :: [Digit]
| otherwise = [d] digits = [1..'97
blank :: Digit -> Bool
expand :: Matrix Choices -> [Grid] blank = (=="0)

expand = cp . map cp

cp :: [[a]] -> [[a]]
cpll =l

cp (xs:xss) = [X:ys | X <- XS, YyS <- Cp XSS]
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Specification (2)

valid :: Grid -> Bool

valid g = all nodups (rows Q) &&
all nodups (cols g) &&
all nodups (boxs Q)

nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = X notElem” xs && nodups xs

[ (T A L & N ([ ], ) \
L B INE EEes CEE]. | EEes EE]. | (XX XX
W= 1y L= 9 ([[PEEes EE].)

. P

g Grid = Matrix Digit

[Row Digit]

[[Digit]]

Bird’s_; _Suo!oku 23 Young Won Lim
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Specification (3)

rows :: Matrix a -> [Row a]
rows = id

cols :: Matrix a -> [Row a]
cols [xs] =[[X] | X <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

boxs :: Matrix a -> [Row a]

boxs = map ungroup . ungroup .
map cols .
group . map group

Bird’s_; _Suo!oku 24 Young Won Lim
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group and ungroup

ungroup = concat

group [] = I
group (xX:y:z:xs) [X,Y,z] : group xs

[X,Y,z,xs] == [[X, YV, z], group xs ]
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rows and cols

type Matrix a = [Row a] [[a]]
type Rowa =[aq]

rows ;. Matrix a -> [Row a]

rows . Matrix a -> Matrix a

rows = id id : identity function
If a matrix is given by a list of its rows
tt returns the same matrix

cols :: Matrix a -> [Row a]
cols .. Matrix a -> Matrix a
cols [xs] =[[X] | X <- xs]

cols (xs:xss) = zipWith (:) xs (cols xss)

transpose of a matrix

Bird’s_; _Suo!oku 26 Young Won Lim
Specifications (1A) 4/26/17



cols

cols :: Matrix a -> [Row a]
cols . Matrix a -> Matrix a
cols [xs] =[[X]| X <- xs]

cols (xs:xss) = zipWith (:) xs (cols xss)

[FoEn ] [ ]\

i

e,
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boxs

type Matrix a = [Row a] [[a]]

boxs :: Matrix a -> [Row a] type Rowa = [a]
boxs :: Matrix a -> Matrix a
boxs = map ungroup .

ungroup .

map cols .

group .

map group
ungroup :: [[a]] -> [a]
ungroup = concat takes a grouped list and ungroups it

group |] =l
group (X:y:z:xs) = [X,y,z]:group Xxs splits a list into groups of three
group xs = take 3 xs : group (drop 3 xs)

Bird’g _Sud_oku 28 Young Won Lim
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group.map group

map group

[['5, '3, 4,6, ‘7, ‘8, ‘9,1, 2], [[[[5, ‘3, ‘4], ['6, ‘7, ‘8], ['9, ‘1, 2],
[‘6’, ‘7", 2,1, '9, ', ‘3,4, ‘8], [['6’, ‘7, 2], ['1,'9, '5'], ['3, ‘4, ‘8] ],
[‘1, 9", '8, '3, ‘4, '2,'5,'6', ‘7], [['1, ‘9, ‘8], ['3, ‘4, ‘2], ['5, ‘6, ‘T'] ] ],
[‘8", 5, 9,7, 6,1, '4, 2, ‘3] (e, s, 9l 7, e, 1] [4, 2, 3],
[‘4", 2", '6",'8", ', '3, '7,'9, ‘1] o [['4', ‘2’, ‘6’], '8, ‘5, ‘3], ['T", ‘9, ‘1] ],
[‘7", 1, ‘3,'9,'2",'4,'8,'5, '6’] 5 [['7, 1, ‘3], ['9, ‘2, 4], '8, ‘5, ‘6] ] ],
[‘9%, ‘6", ‘1", ‘5, ‘3, ‘7", ‘2, '8, ‘4’ ] 2 (e, e, ‘1, 5, 3, 7] [2, 8, ‘47],
[2", 8,7, '4,'1,'9,'6, ‘3, ‘5], [['2', 8, ‘7], ['4, ‘1,9, 6, ‘3, ‘5],
[3",‘4,'5,'2",'8,'6, 'L, '7,'9]] [['3, 4,5, ['2, '8, '6'], ['1", ‘7", ‘9] ]]]

type Grid = Matrix Digit [Row Digit] [[Digit]]
Haskell Overview 29 Young Vl/lc/>£16l7i1n71



map cols. group . map group

[[[[5,'3, 4,16, 7,81, [9,1, 211, [[1[5,', 4], [6, 7, 2] [TFee]l,
[['6, ‘7, 2], ['1, 9, ‘5], ['3, ‘4, '8]], [['6), ‘7, ‘8], [1, 9, 5], [3, 4, 2]],
(EENSTSIESIZNZNENeNTN . (9,1, 21,[3, 4, 8], (5,671,

[[[®, 5,91 [7,'6, 1], [4,2,31],  [[[8,5, 9 [4, 2, 6] [FFTEs]]
[['4, 2, ‘6], '8, 5", ‘3], ['7", ‘9, ‘'I']], [[7, 6, ‘1], [8, ‘5, 3], [9, 2, 4] ],
N7ZRLNSIeN2aanIeNsuel . [[4,2,31,[7,'9, 1], [8,/5,61] ],

[[[9,'6, 1], [5, '3, 71 [2,'8, 411, [[[9 6, 1], [2, 8, 7], [3F4Ns]),
[[2", ‘8, ‘7], ['4, 1", ‘9, ['6", ‘3, ‘5] ], [[5, ‘3, 7], ['4, ‘1, ‘9, [2, 8, 6] ],
SIZNSIZESNENITITIgn 11 [[2,®,'4],[6,'3, 5], 7911 1]
type Grid =  Matrix Digit [Row Digit] [[Digit]]
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ungroup . map cols . group . map group

ungroup

(L[5, 3,4, [6, 7, 2], [1,'9, 811, [ [[5,°3 4][6, 7 2],[1,9, 8]]
[[6, 7, 8], [71, 9, 5], [3, 4, 2]], [['6, 7, 8] [1, 9,5 [3, 4, 27],
[[9" 1, 2], [3, 4", '8, ['5, 6, ‘T ] ], [[9' 1, 2], [3,'4, 8], [5', '8, T1] ,
[[[8, 5, 9] [4) 2,67 [7, 1, 3]], (185", ‘9, [4), 2,61, [T, 1, 3] ]
[[7, 6, ‘1], [8, 5, 3], [9, 2, ‘47], [[7, 6", ‘1], ['8, 5, 3], [9, 2, ‘4]],
[[4, 2, 3], [7" 9", ‘1], [8, 5, 6] ], [[4.2,3],[7,9, 17, (8,5, ®]] ,
[[[9' 6, 1] [2,'8, 7], [3, 4" '5] ] (196, 1), [2, '8, 7], [3, 4", 5] ]
[['5, 3, ‘7], ['4, ‘1, ‘9], [2), ‘8, ‘67] ], [['5, '3, 7], ['4, 1,9, [2, ‘8, 67],
[[2.°8" 4], [6,'3, 51, [T, ‘7. '9111]  [[2.'8,4].[6,'3, 5], [1,'7,9]] |
type Grid = Matrix Digit [Row Digit] [[Digit]]
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map ungroup . ungroup . map cols . group . map group

map ungroup

[ [[5, 3, 4], [6, 7, 2] [1, 9, ‘8]], [ [ 5,34, 6,7, 2, 19 '8 ]
[[6, 7, 8] [1, 9, 5] [3, 4, 21]], [ ‘6", 7,8, 195, 3 4 2]
[[9, 71, 2] [3,4,'8][5, 6, 7]] , [ 9, 1,2, ‘3,48, '5,'6", 7T ]
[[8, 5, 91, ['4, 2, 6] [7, 1, 3] [ '8,5,'9, 4 2,6, 7, '1, 3 ]
[[7, 6", ‘1], ['8, ‘5, ‘3], [9, ‘2, '4']], [ 777,61, '8,%5,'3, 9, 2, 4]
[[4,2,3],[7,'9, 1] [8, 5, ‘6]], [ 42,3, '7,'9,'1, '8,5,'6" ]
[[9, 6", ‘1], [2, 8, ‘7], [3, ‘4, ‘'51]], [ ‘9, '6, 1, 27,8, 7, 34 5]
[[5, 3, 7], ['4,71, 9] [2, 8, '61]], [ 5,3, 7, 4, 1,9, 2,'8,6 ],
[[2, 8, ‘4], [6, 3, 5], ['1, 7, 91] ] [ 2°,'8,4, 6", 3,5, '1',7,'9 ] ]
type Grid =  Matrix Digit [Row Digit] [[Digit]]

Haskell Overview 32 Young Won Lim
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boxs

group

map group

Tleol—| o
ol x| 0
O 4| =]
S|l —| &
Tlc|l—| o
o|lo|x|o
O 4= | =]
S|lo|=| &
T £ - o
O ODx O
O 4= =
® o — £

map cols

ungroup

map ungroup
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boxs

abcd bOXS a b e f

e f g h c d g h

I jJ k | I j m n

mn o p k | o p

ab bOXS a b e f

 f cdgh

i jJ k | i ] mn

mn o p k | o
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cols

a b c d cols a e i m

e f g h b f j n

I ] k | c g ko

mn o p d h | p

a c d cols a e i m

e g h

i k | c g ko

m op d h I p
Bird’s Sudok ! i
pecifications 35 roung Y

Specifications (1A)



rows, cols, boxs

‘abcd\ (OWS a b c d
1 Kk )

I I I jJ k |
m n p mn o p
cols
I J m n
m n|o p k | o p
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nodups

nodups :: (Eqa)=> [a] -> Bool
nodups [] = True
nodups (x:xs) =X notElem xs && nodups xs

notElem :: (Eq a) => a-> [a] -> Bool
notElem xxs =all (/=x) xs

allp=and . map p

nodups :: (Eqa) => [a] -> Bool
nodups |] = True
nodups (x:xs) = all (/=x) xs && nodups xs

allp=and . mapp

Bird’s Sudoku
Specifications (1A) 37

Young Won Lim
4/26/17



nodups

[‘6, ‘7, 2, ‘1,
‘e, [T, 2, ‘1,
‘6, ‘7, [2, ‘1,
‘6, ‘7, 2,[1,

‘6, ‘7, ‘2,

‘6, ‘7, 2, 1,

‘61’ l71’ l27’ ‘17’

l91,

l91’

I51’

I51’

I5l’

nodups (X:xs) =
X notElem” xs && nodups xs
notElem xxs =all (/=x) xs

allp=and . mapp

Bird’s Sudoku
Specifications (1A)
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nodups

['6, 7, 2, ‘I, ‘9, ‘5, ‘3, 4, ‘8] nodups (xxs) =
X notElem” xs && nodups xs
‘e, ‘7, ‘2, ‘I, ‘9, ‘5 ['3, ‘4, ‘8]
notElem xxs =all (/=x) xs
allp=and . map p

‘', ‘7, ‘27, ‘I, ‘9, ‘5, ‘3, ‘4 [8]

l61’ (71’ (21, ‘11’ ‘91’ ‘51’ l31’ (41’ (81 []

Bird’s Sudoku
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