
Structures and Unions

Young W. Lim

2020-10-23 Fri

Young W. Lim Structures and Unions 2020-10-23 Fri 1 / 32



Outline

1 Structures and unions
Based on
Structure Background
Union Background

Young W. Lim Structures and Unions 2020-10-23 Fri 2 / 32



Based on

1 "Self-service Linux: Mastering the Art of Problem Determination",

Mark Wilding

1 "Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Structures and Unions 2020-10-23 Fri 3 / 32



Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Structures and Unions 2020-10-23 Fri 4 / 32



Strudctures (1)

structures
combining objects of different types

unions
aggregate multiple objects into a single unit
allows an objects to be referenced using several different types

Young W. Lim Structures and Unions 2020-10-23 Fri 5 / 32



Strudctures (2)

group objects possible different types into a single object
like arrays

stored in a contiguous region
a pointer to a structure : the address of its 1st byte

compiler maintains information about each structure type
indicating the byte offset of each field
compiler generates references to structure elements
using these offset as displacements in memory referencing instructions

Young W. Lim Structures and Unions 2020-10-23 Fri 6 / 32



Rectangle Structure Exmaple (1)

to represent a rectangle as a structure
struct rect {

int llx; // x coordinate of lower-left corner
int lly; // y coordinate of lower-left corner
int color; // coding of color
int width; // width (in pixels)
int height; // height (in pixels)

};

to declare a structure variable r
struct rect r;

to access fields of a structure variable r
r.llx = r.lly = 0;
r.color = 0xFF00FF;
r.width = 10;
r.height = 20;

Young W. Lim Structures and Unions 2020-10-23 Fri 7 / 32



Rectangle Structure Exmaple (2)

to represent a rectangle as a structure
struct rect {

int llx; // x coordinate of lower-left corner
int lly; // y coordinate of lower-left corner
int color; // coding of color
int width; // width (in pixels)
int height; // height (in pixels)

};

to compute the area of a rectangle
int area (struct rect *rp)
{

return (*rp).width * (*rp).height;
}

Young W. Lim Structures and Unions 2020-10-23 Fri 8 / 32



Rectangle Structure Exmaple (3)

to represent a rectangle as a structure
struct rect {

int llx; // x coordinate of lower-left corner
int lly; // y coordinate of lower-left corner
int color; // coding of color
int width; // width (in pixels)
int height; // height (in pixels)

};

to rotage a rectangle
void rotate_left (struct rect *rp)
{ // swap width and height

int t = rp->height;
rp->height = rp->width;
rp->width = t;
return (*rp).width * (*rp).height;

}

Young W. Lim Structures and Unions 2020-10-23 Fri 9 / 32



Strudcture fields accessing Exmaple (1)

struct rec { 0x00 : i
int i; // 4 bytes 0x04 : j
int j; // 4 bytes 0x08 : a[0]
int a[3]; // 12 bytes 0x0C : a[1]
int *p; // 4 bytes 0x10 : a[2]

0x14 : p
0x1C :

offset 0 4 8 12 16
contents i j a[0] a[1] a[2]
size 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Young W. Lim Structures and Unions 2020-10-23 Fri 10 / 32



Strudcture Exmaple (4)

movl (%edx), %eax ; Get r->i
movl %eax, 4(%edx) ; Store in r->j

; r in %eax, i in %edx
leal 8(%eax, %edx, 4) ; %ecx = &r->a[i]

Young W. Lim Structures and Unions 2020-10-23 Fri 11 / 32



Strudcture Exmaple (5)

r->p = &r->[r->i + r->j];

movl 4(%edx), %eax ; Get r-j
addl (%edx), %eax ; Add r-i
leal 8(%edx, %eax, 4), %eax ; Compute &r->[r->i + r->j]
movl %eax, 20(%edx) ; Store in r->p

Young W. Lim Structures and Unions 2020-10-23 Fri 12 / 32



Strudcture Exmaple (6)

struct prob {
int *p;
struct {

int x;
int y;

} s;
struct prob *next;

};

movl 8(%ebp), %eax
movl 8(%eax), %edx
movl %edx, 4(Teax)
leal 4(%eax), %eax
movl %edx, (%eax)
movl %eax, 12(%eax)

Young W. Lim Structures and Unions 2020-10-23 Fri 13 / 32



Structure Declaration (2)

struct rec *r;

copy the element of r->i to element r->j
r->j = r->i
movl (%edx), %eax ; Get r->i
movl %eax, 4(%edx) ; Store in r->j

Young W. Lim Structures and Unions 2020-10-23 Fri 14 / 32



Structure Declaration (3)

struct rec *r;

to generate a pointer to an object within a structure
simply addthe field’s offset to the structure address

generate the pointer &(r->a[i])
by adding offset 8+ 4 · 1 = 12
for pointer r in register %eax
integer variable i in register %edx

r in %eax, i in %edx
leal 8(%eax, %edx, 4), %ecx ; %ecx = &r->a[i]

Young W. Lim Structures and Unions 2020-10-23 Fri 15 / 32



Structure Declaration (4)

struct rec *r;

r->p = &r->a[r->i + r->j];
movl 4(%edx), %eax ; get r->j
addl (%edx), %eax ; add r->i
leal 8(%edx, %eax, 4), %eax ; compute &r->[r->i + r->j]
movl %eax, 20(%edx) ; store in r->p

Young W. Lim Structures and Unions 2020-10-23 Fri 16 / 32



Unions (1)

structures
combining objects of different types

unions
aggregate multiple objects into a single unit
allows an objects to be referenced using several different types

Young W. Lim Structures and Unions 2020-10-23 Fri 17 / 32



Unions (2)

allow a single object to be referenced according to mulitple types
the syntax of a union declaration is identical to that for structures
the different semantics
rather than having the different fields reference different blocks
but they all reference the same block
the use of two different fields is mutually exclusive
can reduce memory usage3
can be used to access the bit patterns of different data types

Young W. Lim Structures and Unions 2020-10-23 Fri 18 / 32



Union Declaration (1)

struct S3 { union U3 {
char c; char c;
int i[2]; int i[2];
double v; double v;

}; };

0x00 : c 0x00 : c, i[0], v
0x04 : i[0] 0x04 :
0x08 : i[1] 0x08 : i[1]
0x0c : v 0x0c :
0x20 : 0x20 :

size = 20 bytes size = 8 bytes

Young W. Lim Structures and Unions 2020-10-23 Fri 19 / 32



Union Declaration (2)

struct S3 { union U3 {
char c; char c;
int i[2]; int i[2];
double v; double v;

}; };

type c i v size
S3 0 4 12 20
U3 0 0 0 8

Young W. Lim Structures and Unions 2020-10-23 Fri 20 / 32



Union Declaration (2’)

i has offset 4 in S3 rather than 1 (alignment)
for pointer p of type union U3*
references p->c, p->i[0], p->v
would all reference the beginning of the data structure
the overall size of a union equals
the maximum size of any of its fields

struct S3 { union U3 {
char c; char c;
int i[2]; int i[2];
double v; double v;

}; };

Young W. Lim Structures and Unions 2020-10-23 Fri 21 / 32



Union Declaration (3)

to implement a binary tree data structure
where each leaf node has a double data value,
while each internal node has pointers ot two children

struct NODE { union NODE{
struct NODE *left; struct NODE {
struct NODE *right; struct NODE *left;
double data; struct NODE *right;

}; } internal;
double data;

};

4 + 4 + 8 = 16 bytes 4 + 4 = 8 bytes

Young W. Lim Structures and Unions 2020-10-23 Fri 22 / 32



Union Declaration (4)

if n is a pointer to a node of type union NODE *
we would reference the data of a leaf node as
n->data, and the children of an internal node
as n->internal.left and n->internal.right

Young W. Lim Structures and Unions 2020-10-23 Fri 23 / 32



Union Dclaration (5)

there is no way to determine
whether a given node is leaf or an internal node
a common way is to introduce an additional tag field is_leaf

is_leaf is 1 for a leaf node
0 for an internal node

struct NODE {
int is_leaf; // 4 bytes
union NODE{

struct NODE {
struct NODE *left; // 4 bytes
struct NODE *right; // 4 bytes

} internal; // 8 bytes
double data; // 8 bytes

} info; // 8 bytes
}; // 12 bytes

Young W. Lim Structures and Unions 2020-10-23 Fri 24 / 32



Union Dclaration (6)

this structure requires 12 bytes

4 bytes for is_leaf
4 bytes for info.internal.left or info.internal.right
8 bytes for info.data

struct NODE {
int is_leaf; // 4 bytes
union NODE{

struct NODE {
struct NODE *left; // 4 bytes
struct NODE *right; // 4 bytes

} internal; // 8 bytes
double data; // 8 bytes

} info; // 8 bytes
}; // 12 bytes

Young W. Lim Structures and Unions 2020-10-23 Fri 25 / 32



Union Dclaration (7)

in this case, the savings gain of using a union is small
relative to the awkwardness of the resulting code
for data structures with more fields,
the savings can be more compelling

Young W. Lim Structures and Unions 2020-10-23 Fri 26 / 32



Union Declaration (8)

unions can also be used to access the bit patterns
of different data types

the following code returns the bit representation
of a float as an unsigned
unsigned float2bit(float f)

{
union {

float f;
unsigned u;

} temp;
temp.f = f;
return temp.u;

};

Young W. Lim Structures and Unions 2020-10-23 Fri 27 / 32



Union Declaration (9)

in this code, we store the argument in the union
using one data type, and access it using another
Interestingly, the code generated for this procedure
is identical to that for the following procedure;
unsigned copy(unsigned u)
{

return u;
}

movl 8(%ebp), %eax

Young W. Lim Structures and Unions 2020-10-23 Fri 28 / 32



Union Declaration (10)

the body of both procedure is just a single instruction
movl 8(%ebp), %eax

this demonstrates the lack of type information
in assembly code
the argument will be at offset 8 relative to %ebp
regardless of whether it is a float or an unsigned

the procedure simply copies its argument as the return value
without modifying any bits

Young W. Lim Structures and Unions 2020-10-23 Fri 29 / 32



Union Declaration (11)

when using unions to combine data types of different sizes,
byte ordering issues can become important
for example, suppose we write a procedure that will
create an 8-byte double using the bit patterns given
by two 4-byte unsigned’s
double bit2double(unsigned word0, unsigned word1)
{

union {
double d;
unsigned u[2];

} temp;

temp.u[0] = word0;
temp.u[1] = word1;
return temp.d;

}

Young W. Lim Structures and Unions 2020-10-23 Fri 30 / 32



Union Declaration (12)

on a little endian machine such as IA32, argument word0 will
become the low order four bytes of d
while word1 will become the high order four bytes
on a big endian machine, the role of the two arguments will be
reversed
double bit2double(unsigned word0, unsigned word1)
{

union {
double d;
unsigned u[2];

} temp;

temp.u[0] = word0;
temp.u[1] = word1;
return temp.d;

}

Young W. Lim Structures and Unions 2020-10-23 Fri 31 / 32



Union Declaration (13)

unions can be useful in several contexts
however, the can also load to nasty bugs,
since they bypass the safety provided by the c type system

one application is when we know in advance
that the use of two different fields in a data structure
will be mutually exclusive

then declaring these tow fields as part of a union
rather than a structure will reduce the total space allocated

Young W. Lim Structures and Unions 2020-10-23 Fri 32 / 32


	Structures and unions
	Based on
	Structure Background
	Union Background


