Signals & Variables (1A)

Concurrent & Sequential Signal Assignments

Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Sequential Statement

- Wait Statement
- Assertion Statement
- Report Statement
- Generate Statement
- Signal Assignment
- Variable Assignment
- Procedure Call
- If
- Case
- Loop
- Next
- Exit
- Return
- Null

- Case Statement
- If Statement
- Loop Statement
- Process Statement
- Subprogram Body
- Sequential Signal Assignment
 - Conditional Signal Assignment
- Selected Signal Assignment

Concurrent Statement

4

Concurrent & Sequential

Concurrent Signal Assignment

Conditional Signal Assignment

<u>Selected</u> Signal Assignment

Conditional Signal Assignment (1)

Concurrent Signal Assignment

- Conditional Signal Assignment
- <u>Selected</u> Signal Assignment

Conditional Signal Assignment (2)

Conditional Signal Assignment (3)

8

Selected Signal Assignment

9

Concurrent & Sequential

Simulation Time (1)

Simulation Time (2)

Simulation 7	Time	Evaluation
Unit: ms, ns, ps,	Unitless	
	Delta	Zero Delay Assignment
X1	<=	A or B;
X1 is updated after at least one Δ		Non-zero Delay Assignment
X1	<=	A or B after 2 ns;
X1 is updated after 2 ns		

Concurrent vs Sequential (1)

architecture *arch* of entity *ent* is begin

concurrent signal statement, **concurrent** signal statement, **concurrent** signal statement,

<u>outside</u> process statement

process (A, B, C)

begin

end

Sequential signal statement, **Sequential** signal statement, **Sequential** signal statement,

end process

<u>inside</u> process statement

- Block Statement
- Generate Statement

Concurrent vs Sequential (2)

Concurrent vs Sequential (3)

X1 <= A or B after 1 ns ;		
Y1 <= C or D after 1 ns ;		
Z1 <= E or F after 1 ns ;		
process (A, B, C, D, E, F) begin		
X2 <= A or B after 1 ns ;		
Y2 <= C or D after 1 ns ;		
Z2 <= E or F after 1 ns ;		
end process;		

Concurrent vs Sequential (4)

Evaluate – Update (1)

When X or Y is changed, the assignments are **evaluated** using the <u>current values</u>, not the <u>new values</u> of X or Y

Non-Blocking Assignments

Evaluate – Update (2)

process (X, Y)

Event on X - X changed into new value 'l'

Induces a new event on Y

Evaluate Phase

Update Phase

Concurrent & Sequential

Evaluate – Update (3)

process (X, Y)

Event on Y - Y changed into new value '1'

Induces a new event on Z

Evaluate Phase

Update Phase

Concurrent & Sequential

Zero vs Non-zero Delay Assignments (1)

When A, B, C, D, E, or F is changed, the assignments are evaluated using the <u>current values</u>, not the <u>new values</u> of A, B, C, D, E, F

Concurrent & Sequential

Zero vs Non-zero Delay Assignments (2)

Zero vs Non-zero Delay Assignments (3)

Zero Delay Assignment

Concurrent & Sequential

Non-Zero Delay Assignment

Concurrent & Sequential

Non-blocking Assignment (1)

25

Non-blocking Assignment (2)

Scheduled on the next delta time SEL value will not be **updated** until the next delta time

Non-blocking Assignment Without waiting the next delta time, it can <u>continue</u> to process the <u>next</u> <u>sequential statement</u> (processed with the wrong value of SEL)

Non-blocking Assignment (3)

Non-blocking Assignment (4)

```
process (A, I0, I1)
 variable SEL : integer range 0 to 1;
begin
  SEL := A \text{ or } B;
  if (A='1') then SEL := SEL + 1; end if;
  case SEL is
       when 0
            Q <= 10;
       when 1
            Q <= 1;
  end case;
end process;
```

Variable SEL changes its value immediately.

General MUX model

```
process (A, I0, I1)
begin
  case A is
       when '0'
           Q <= 10;
       when '1'
           Q <= 11;
  end case;
end process;
```

Variable & Signal Assignments

When A, B, C, D, E, or F is changed, the assignments are evaluated using the <u>current values</u>, not the <u>new values</u> of A, B, C, D, E, F

Variable assignments

Signal assignments

process (A, B, C, D, E, F) begin X2 <= A or B ; Y2 <= C or D ; Z2 <= E or F ; end process;

Updated values of X2, Y2, Z2 are observable **immediately**

Updated values X2, Y2, Z2 are observable after <u>at least on delta time</u>.

Concurrent & Sequential

Variable Assignment (1)

Variable Assignment (2)

Concurrent & Sequential

Variable Assignment (3)

33

Mixed Assignments Example (1)

Mixed Assignments Example (2)

Mixed Assignments Example (3)

Concurrent & Sequential

36

Mixed Assignments Example (4)

Same Synthesis Result

References

- [1] http://en.wikipedia.org/
- [2] J. V. Spiegel, VHDL Tutorial,
 - http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
- [3] J. R. Armstrong, F. G. Gray, Structured Logic Design with VHDL
- [4] Z. Navabi, VHDL Analysis and Modeling of Digital Systems
- [5] D. Smith, HDL Chip Design
- [6] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html
- [7] VHDL Tutorial VHDL onlinewww.vhdl-online.de/tutorial/