Sequential Circuit Timing

Young Won Lim 11/6/15 Copyright (c) 2011 – 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Latches and FF's

Register

4

Types of Timing Diagrams

a timing diagram without delays

a timing diagram with delays

Sequential Circuit Timing

5

Young Won Lim 11/6/15

DFF Testbench

module dff(d, clk, rst, q, qb); input d, clk, rst; output q, qb; reg q; always @(posedge clk)

begin if (\sim rst) q = 0; else q = d; end

assign qb = \sim q; endmodule

Nonblocking Assignments	<=
Blocking Assignments	=

initial begin clk = 0: d = 0;rst = 1: rst = 0: #20 rst = 1: #10 d <= 1; #10 d <= 0: #10 d <= 1: #10 d <= 0: #10 d <= 1: #10 d <= 1: \$finish; end #10 d = 1;#10 d = 0;#10 d = 1;#10 d = 0: #10 d = 1:#10 d = 1;

`timescale 1ns/100ps module dff_tb; reg d, clk, rst; dff U1 (d, clk, rst, q, qb); always #10 clk = ~clk; initial begin

\$dumpfile("test.vcd");
\$dumpvars(0, dff_tb);
end

endmodule

Testbench with Nonblocking Assignments

```
module dff(d, clk, rst, q, qb);
input d, clk, rst;
output q, qb;
reg q;
```

```
always @(posedge clk)
begin
if (~rst) q = 0;
else q = d;
end
```

assign qb = \sim q; endmodule 7

`timescale 1ns/100ps module dff_tb; reg d, clk, rst; dff U1 (d, clk, rst, q, qb); always #10 clk = ~clk; initial begin \$dumpfile("test.vcd"); \$dumpvars(0, dff tb);

endmodule

end

DFF Testbench Waveforms

Nonblocking Assignments

samples the <u>unchanged</u> d input values at the posedge of clk

Blocking Assignments

samples the <u>changed</u> d input values at the posedge of clk

Blocking Assignments

Nonblocking Assignments

Nonblocking Assignments

FF Timing – Input and Output Delays

Sequential Circuit Timing

11

Reg to Reg Timing

Clock Skew

Path Delay

Setup & Hold Time (1)

Setup & Hold Time (2)

Sequential Circuit Timing

16

Clock Gating

17

Max Path / Min Path

Rise / Fall Times

Sequential Circuit Timing

Young Won Lim 11/6/15

PVT Variation

Process Voltage

Temperature

High temperatureMax delayLow temperaturemin delay

FF Output Delay

contamination delay

propagation delay

Path Delay

combinational logic delay

$$t_{cd} \leq t_{delay} \leq t_{pd}$$

min delay Max delay

Reg-to-Reg Delay (1)

Reg-to-Reg Delay (2)

Setup Time / Hold Time

Setup Time Violation

Hold Time OK

Hold Time Violation

Setup Time / Hold Time

Setup Time Violation

Resolution Time

References

- [1] http://en.wikipedia.org/
- [2] M. M. Mano, C. R. Kime, "Logic and Computer Design Fundamentals", 4th ed.

[3] J. Stephenson, Understanding Metastability in FPGAs. Altera Corporation white paper. July 2009.