Optical Sensor (2A)

Optical Sensor TypeOptical Sensor Characteristics

Copyright (c) 2009 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Optical Sensor Type

Physical Effect	Photo Sensor Type	Note
Photo-conductive	CdS cell	Low Speed
	PbS cell*	
Photo-voltaic	photo-diode	High Speed
	photo-transistor	
Photo-electric	photo-tube	Large Size
	photo-multiplier	
Pyro-electric	pyro-electric detector	Infrared
	thermopile	
	bolometer	

Principles of Operation (1)

When light is absorbed by a material

Photo-conductivity Effect:

• increases conductivity

Photo-voltaic Effect:

creates a voltage (or current)

Photo- electric Effect (Photon Emission):

• emits electrons

Principles of Operation (2)

Pyro-electricity:

- generates a temporary electrical potential when certain materials are heated or cooled
- the opposite effect is called **electro-caloric effect**

Thermo-electricity:

- a temperature difference crates an electrical potential
- an electrical potential creates a temperature difference

Photo-conductive cell (CdS cell)

Increasing incident light intensity

- → the resistance is decreased
- \rightarrow the current is increased
 - Visible light
 - High sensitivity
 - Slow response time

Photo-conductive cell (PbS cell)

Increasing incident light intensity

- \rightarrow the resistance is decreased
- \rightarrow the current is increased

Decreasing the temperature (cooling)

- \rightarrow the longer waveform can be detected
- → the dark current is increased
- \rightarrow the response time is slowed
 - Infrared detection
 - High sensitivity
 - Fast response time (200 µS)

Photo-diode

Increasing incident light intensity

- → increasing electron-hole pairs
- → increasing photon emission
- → increasing output current

- Measure open circuit voltage (or high load resistor)
- Measure closed circuit current (or low load resistor)
- Measure the current by applying the reverse bias
- linear output current

Photo-transistor

Increasing incident light intensity

- → increasing electron-hole pairs
- → increasing output current

- forward biased B-E
- reversed biased C-E
- transistor amplification
- non-linear output current

Photo-tube

Increasing incident light intensity

- → increasing photon emission
- → increasing output current

- Cathode + Plate
- small output current
- stable sensitivity
- good linearity

Photo-multiplier

Increasing incident light intensity

- → increasing photon emission / secondary emission
- → increasing output current
 - Cathode + Many Dynodes + Plate
 - amplified output current
 - best sensitivity
 - good linearity
 - fast response time

Pyro-electric IR Detector

Increasing incident IR intensity

- → increasing temperature
- → decreasing polarization
- → increasing the difference in charge
- → increasing output voltage

- no dependance on wave length
- low sensitivity
- slow response time

Thermopile IR Detector

Increasing incident IR intensity

- → increasing temperature
- → increasing Seebeck voltage
 - series connection of thermocouples

Bolometer IR Detector

Increasing incident IR intensity

- → increasing temperature
- → decreasing resistance
- → increasing current

• bridge circuit

Thermopile IR Detector

Increasing incident IR intensity

- → increasing temperature
- → increasing Seebeck voltage
 - series connection of thermocouples

	sensitivity	response	output	size	cost
photo- conductive	High			Small	Low
photo- voltaic			Large	Small	Low
photo- electric	Very High	Fast		Large	

	Applications		
photo-conductive	camera exposure, photo relay, photo control		
photo-voltaic	camera EE systems, bar code, card reader		
photo-electric	Precision measurement		

EE (electric eye)

	types	sensitivity	response	wavelength
photo- conductive	PbS, PbSe	High	Fast	depend
pyro-electric	pyroelectic thermopile bolometer	Low	Slow	independent

	Applications		
photo-conductive	satellite, medical, microscope		
pyro-electric	fire alarm, intrusion detection, door sensor, vending machine		

Optical Detector-Emitter Pair Type

Photo-interrupter

- detects an object when it interrupts the emitted light beam
- transmitted type
- reflective type

Photo-coupler (Opto-isolator)

- electrical isolation between two electrical systems
- optical connection by detector and emitter

Optical Detector-Emitter Pair Characteristic

Emitter	Detector	response	CTR	cost	feature
LED	CdS	1 ~ 100 ms		low	dc, ac
IRED	PIN photo- diode	10 ~ 100 µs	small		good output linearity
IRED	photo- transistor	1 ~ 10 µs	relatively large	low	
LED	photo- transistor with base	1 ~ 10 µs			base resistor minimizes dark current
IRED	Darlington photo- transistor	10 ~ 100 µs	larg		large dark current

CTR (Current Transfer Ratio)

References

- [1] http://en.wikipedia.org/[2] Nam Ki Min, Sensor Electronics, Dong-il Press