Undersampling (2A)

•

•

Copyright (c) 2009 - 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Low-pass Signal Sampling

Low-pass Signal

Nyquist Criterion

$$f_s \geq 2B$$

Band-pass Signal

Nyquist Criterion

$$f_s \ge 2 f_c + B$$

Sub-Nyquist Rate? UnderSampling

$$f_s < 2 f_c + B$$

 $| \blacktriangleleft | B = 5 MHz$

 $+f_c$

Sampling

Sampling in time domain

Multiplication by a comb of impulse functions

in frequency domain

convolution of the Fourier transformed impulse functions

REPLICATION

Band-pass Signal Sampling

- IF filtering
- Harmonic Sampling
- Sub-Nyquist Sampling

Sampling Frequency f_s (1)

Assume there are m multiples of f_s

Given an integer m

$$2f_c - B = m \cdot f_s$$

Max f_s condition

f_s can be decreased according to the following condition without introducing aliasing problems

$$2f_c + B = (m+1) \cdot f_s$$

Min f_s condition

Given Band-pass Signal is characterized by

- Bandwidth B
- Carrier Frequency f_c

$$\frac{2f_c + B}{m+1} \leq f_s \leq \frac{2f_c - B}{m}$$

Sampling Frequency f_s (2)

$$\frac{2f_c + B}{m+1} \le f_s \le \frac{2f_c - B}{m}$$

Given Band-pass Signal is characterized by

- Bandwidth B
- Carrier Frequency f_c
- Normalization by B

$$\frac{2f_c + B}{(m+1)B} \leq \frac{f_s}{B} \leq \frac{2f_c - B}{mB}$$

$$\frac{2f_H}{(m+1)B} \leq \frac{f_s}{B} \leq \frac{2f_L}{mB}$$

$$f_H = f_c + B/2$$
 Highest frequency

$$f_L = f_c - B/2$$
 Lowest frequency

Min, Max Condition on f_s (2)

max f_s

$$\frac{2f_H}{k} \leq f_s \leq$$

$$\leq f_s \leq$$

$$\frac{2f_L}{m}$$

$$k = m+1$$

m represents how many f_s are in $2f_c - B$ in max f_s

$$\max f_s = \frac{2 f_c - B}{m} = \frac{2 f_L}{m}$$

krepresents how many f_s are in $2f_c + B$ in min f_s

$$\min f_s = \frac{2 f_c + B}{k} = \frac{2 f_H}{k}$$

Minimum f_s Plot (2)

$$R = f_H / B = 1$$

$$f_H = f_c + B/2 = 2B$$

$$R = f_H / B = 2$$

$$f_H = f_c + B/2 = 3B$$

$$R = f_H / B = 3$$

X-Y Plot

 $\frac{f_{s,min}}{R}$

This plot shows min f_s
normalized by B,
for the given bandpass signal
that is characterized by R
and the given parameter m

- Bandwidth B
- Carrier Frequency f_c

$$R = \frac{f_H}{B}$$
$$= \frac{f_c + B/2}{B}$$

X

Minimum f_s Plot (5)

Min, Max Condition on f_s (2)

$$\frac{2f_c + B}{m+1} \leq f_s \leq \frac{2f_c - B}{m}$$

$$\frac{2f_c + B}{k} \leq f_s \leq \frac{2f_c - B}{k - 1}$$

$$m+1=k$$

min f_s

$$\frac{2f_H}{k}$$
 $\leq f_s \leq$

$$\frac{2 f_L}{m}$$

$$k = 2 f_H \leq f_s \leq 2f_L m = 1$$

$$k = 3 \qquad \frac{2}{3} f_H \leq f_s \leq f_L \qquad m = 2$$

$$k = 4 \qquad \frac{1}{2}f_H \leq f_s \leq \frac{2}{3}f_L \qquad m = 3$$

Min Max f_s Plot (1)

$$\frac{2f_c + B}{m+1} \leq f_s \leq \frac{2f_c - B}{m}$$

$$\frac{2f_c + B}{k} \leq f_s \leq \frac{2f_c - B}{k - 1}$$

$$\frac{2f_H}{k} \leq f_s \leq \frac{2f_L}{m}$$

Min Max f_s Plot (2)

Range of f_s when R=4.5, B=5 (7)

Spectral Inversion

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann
- [4] R. G. Lyons, Understanding Digital Signal Processing, 1997