
Architecture 3
MCU, ASIP, TTA

Contents

1 MCU 1
1.1 Arts & entertainment . 1
1.2 Organizations . 1
1.3 Science and technology . 1
1.4 Universities . 1
1.5 Other . 1

2 Application-specific instruction set processor 2
2.1 References . 2
2.2 Literature . 2
2.3 External links . 2

3 Transport triggered architecture 3
3.1 Benefits in comparison to VLIW Architectures . 3
3.2 Structure . 3

3.2.1 Function unit . 3
3.2.2 Control unit . 4
3.2.3 Register files . 4
3.2.4 Transport buses and sockets . 4

3.3 Programming . 4
3.4 Programmer visible operation latency . 5
3.5 Implementations . 5
3.6 See also . 5
3.7 References . 5
3.8 External links . 6
3.9 Text and image sources, contributors, and licenses . 7

3.9.1 Text . 7
3.9.2 Images . 7
3.9.3 Content license . 7

i

Chapter 1

MCU

MCU may refer to:

1.1 Arts & entertainment

• MCU, Japanese hip-hop/rap artist, formerly of Kick
the Can Crew

• Marvel Cinematic Universe, a shared fictional uni-
verse of films and TV series developed by Marvel
Studios

• Medium close-up, camera direction used in British
television scripts

1.2 Organizations

• Movement of Unitarian Communists (Movimento
dei Comunisti Unitari), an Italian communist party

• Modern Churchpeople’s Union, an Anglican liberal
theological organisation

• Monte Carlo Universal, a computer software project
to simulate particle transport using the Monte Carlo
method

• Municipal Credit Union, a credit union in NewYork
City

1.3 Science and technology

• Media Control Unit, touchscreen interface on Tesla
Model S

• Microcontroller unit, a single computer chip de-
signed for embedded applications

• Memory controller unit, the part of a microproces-
sor responsible for interfacing it with main memory

• Milk clotting units, a measure of enzyme activity

• Minimum coded unit, the pixel block size of a JPEG
computer image

• Mitochondrial Calcium Uniporter, a calcium chan-
nel in a human cell’s mitochondria

• Modular Concept Unit, the basic avionics packaging
compliant with ARINC Specification 600

• Moisture cure polyurethane coatings, corrosion-
resistant marine and protective coatings

• Multi-chip unit, a system that contains the process-
ing units of the VAX 9000 minicomputer

• Multipoint control unit, a device used to bridge
videoconferencing connections

1.4 Universities
• Marine Corps University, U.S. Marine Corps mili-
tary graduate school

• Ming Chuan University, Taipei, Taiwan

• Manila Central University, Manila, Philippines

• Marymount California University, Palos Verdes,
CA, USA

1.5 Other
• Major Crimes Unit in various works of fiction (part
of the Gotham City Police Department in the Bat-
man comics; agency of the Chicago Police Depart-
ment in the TV series Crime Story; division of the
L.A.P.D in the movie Heat)

• Montluçon - Guéret Airport, France, IATA airport
code

1

https://en.wikipedia.org/wiki/Kick_the_Can_Crew
https://en.wikipedia.org/wiki/Kick_the_Can_Crew
https://en.wikipedia.org/wiki/Marvel_Cinematic_Universe
https://en.wikipedia.org/wiki/Medium_shot
https://en.wikipedia.org/wiki/Movement_of_Unitarian_Communists
https://en.wikipedia.org/wiki/Modern_Churchpeople%2527s_Union
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Municipal_Credit_Union
https://en.wikipedia.org/wiki/Tesla_Model_S
https://en.wikipedia.org/wiki/Tesla_Model_S
https://en.wikipedia.org/wiki/Microcontroller_unit
https://en.wikipedia.org/wiki/Memory_controller_unit
https://en.wikipedia.org/wiki/Milk_clotting_units
https://en.wikipedia.org/wiki/Minimum_coded_unit
https://en.wikipedia.org/wiki/Mitochondrial_calcium_uniporter
https://en.wikipedia.org/wiki/Mitochondria
https://en.wikipedia.org/wiki/ARINC#600_Series
https://en.wikipedia.org/wiki/Moisture_cure_polyurethane
https://en.wikipedia.org/wiki/VAX_9000
https://en.wikipedia.org/wiki/Multipoint_control_unit
https://en.wikipedia.org/wiki/Marine_Corps_University
https://en.wikipedia.org/wiki/Ming_Chuan_University
https://en.wikipedia.org/wiki/Manila_Central_University
https://en.wikipedia.org/wiki/Marymount_California_University
https://en.wikipedia.org/wiki/Gotham_City_Police_Department
https://en.wikipedia.org/wiki/Crime_Story_(TV_series)
https://en.wikipedia.org/wiki/Heat_(1995_film)
https://en.wikipedia.org/wiki/Montlu%C3%A7on_-_Gu%C3%A9ret_Airport

Chapter 2

Application-specific instruction set
processor

An application-specific instruction set processor
(ASIP) is a component used in system-on-a-chip design.
The instruction set of an ASIP is tailored to benefit a spe-
cific application. This specialization of the core provides
a tradeoff between the flexibility of a general purpose
CPU and the performance of an ASIC.
Some ASIPs have a configurable instruction set. Usually,
these cores are divided into two parts: static logic which
defines a minimum ISA (instruction-set architecture) and
configurable logic which can be used to design new in-
structions. The configurable logic can be programmed
either in the field in a similar fashion to an FPGA or dur-
ing the chip synthesis.
ASIPs can be used as an alternative of hardware acceler-
ators for baseband signal processing[1] or video coding.[2]
The traditional hardware accelerators for the baseband or
multimedia suffer from inflexibility. It is very difficult to
reuse the hardware datapath with handwritten finite-state
machines (FSM). The retargetable compilers of ASIPs
help the designer to update the program and reuse the dat-
apath. Typically, the ASIP design is more or less depen-
dent on the tool flow because designing a processor from
the scratch can be very complicated. There are some
commercial tools to design ASIPs, for example, Proces-
sor Designer from Synopsys. There is an open source tool
as well, TTA-based codesign environment (TCE).

2.1 References

[1] Shahabuddin, Shahriar et al., “Design of a transport trig-
gered vector processor for turbo Decoding”, in Springer
Journal of Analog Integrated Circuits and Signal Process-
ing, March 2014.

[2] Hautala, Ilkka, et al. “Programmable Low-Power Multi-
core Coprocessor Architecture for HEVC/H.265 In-Loop
Filtering” in IEEE Transactions on Circuits and Systems
for Video Technology, November 2014

2.2 Literature
• Dake Liu (2008). Embedded DSP Processor De-
sign Application Specific Instruction-set Processors.
MA: Elsevier Mogan Kaufmann. ISBN 978-0-12-
374123-3.

• Oliver Schliebusch, Heinrich Meyr, Rainer Leupers
(2007). Optimized ASIP Synthesis from Architecture
Description Language Models. Dordrecht: Springer.
ISBN 978-1-4020-5685-7.

• Paolo Ienne, Rainer Leupers (eds.) (2006). Cus-
tomizable Embedded Processors. San Mateo, CA:
Morgan Kaufmann. ISBN 978-0-12-369526-0.

• Matthias Gries, Kurt Keutzer (eds.) (2005). Build-
ing ASIPs: The Mescal Methodology. New York:
Springer. ISBN 978-0-387-26057-0.

2.3 External links
• TTA-Based Codesign Environment (TCE), an open
source (MIT licensed) toolset for design of applica-
tion specific TTA processors.

2

https://en.wikipedia.org/wiki/System-on-a-chip
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-374123-3
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-374123-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4020-5685-7
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-369526-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-26057-0
http://tce.cs.tut.fi/
http://tce.cs.tut.fi/
http://tce.cs.tut.fi/

Chapter 3

Transport triggered architecture

In computer architecture, a transport triggered archi-
tecture (TTA) is a kind of CPU design in which pro-
grams directly control the internal transport buses of
a processor. Computation happens as a side effect of
data transports: writing data into a triggering port of a
functional unit triggers the functional unit to start a com-
putation. This is similar to what happens in a systolic ar-
ray. Due to its modular structure, TTA is an ideal proces-
sor template for application-specific instruction-set pro-
cessors (ASIP) with customized datapath but without the
inflexibility and design cost of fixed function hardware
accelerators.
Typically a transport triggered processor has multiple
transport buses and multiple functional units connected
to the buses, which provides opportunities for instruction
level parallelism. The parallelism is statically defined by
the programmer. In this respect (and obviously due to
the large instruction word width), the TTA architecture
resembles the very long instruction word (VLIW) archi-
tecture. A TTA instruction word is composed of multi-
ple slots, one slot per bus, and each slot determines the
data transport that takes place on the corresponding bus.
The fine-grained control allows some optimizations that
are not possible in a conventional processor. For exam-
ple, software can transfer data directly between functional
units without using registers.
Transport triggering exposes somemicroarchitectural de-
tails that are normally hidden from programmers. This
greatly simplifies the control logic of a processor, because
many decisions normally done at run time are fixed at
compile time. However, it also means that a binary com-
piled for one TTA processor will not run on another one
without recompilation if there is even a small difference
in the architecture between the two. The binary incom-
patibility problem, in addition to the complexity of imple-
menting a full context switch, makes TTAs more suitable
for embedded systems than for general purpose comput-
ing.
Of all the one instruction set computer architectures, the
TTA architecture is one of the few that has had CPUs
based on it built, and the only one that has CPUs based
on it sold commercially.

3.1 Benefits in comparison to
VLIW Architectures

TTAs can be seen as “exposed datapath” VLIW archi-
tectures. While VLIW is programmed using operations,
TTA splits the operation execution to multiple move op-
erations. The low level programming model enables sev-
eral benefits in comparison to the standard VLIW. For ex-
ample, a TTA architecture can provide more parallelism
with simpler register files than with VLIW. As the pro-
grammer is in control of the timing of the operand and
result data transports, the complexity (the number of in-
put and output ports) of the register file (RF) need not be
scaled according to the worst case issue/completion sce-
nario of the multiple parallel instructions.
An important unique software optimization enabled by
the transport programming is called software bypassing.
In case of software bypassing, the programmer bypasses
the register file write back by moving data directly to the
next functional unit’s operand ports. When this optimiza-
tion is applied aggressively, the original move that trans-
ports the result to the register file can be eliminated com-
pletely, thus reducing both the register file port pressure
and freeing a general purpose register for other temporary
variables. The reduced RF pressure, in addition simpli-
fying the required complexity of the RF hardware, can
lead to significant energy savings, an important benefit
especially in mobile embedded systems.[1]

3.2 Structure

TTA processors are built of independent function units
and register files, which are connected with transport
buses and sockets.

3.2.1 Function unit

Each function unit implements one or more operations,
which implement functionality ranging from a simple ad-
dition of integers to a complex and arbitrary user-defined
application-specific computation. Operands for opera-

3

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Functional_unit
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Application-specific_instruction-set_processor
https://en.wikipedia.org/wiki/Application-specific_instruction-set_processor
https://en.wikipedia.org/wiki/Instruction_level_parallelism
https://en.wikipedia.org/wiki/Instruction_level_parallelism
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/One_instruction_set_computer
https://en.wikipedia.org/wiki/Register_file
https://en.wikipedia.org/wiki/Operator_(programming)

4 CHAPTER 3. TRANSPORT TRIGGERED ARCHITECTURE

Parts of Transport Triggered Architecture

tions are transferred through function unit ports.
Each function unit may have an independent pipeline. In
case a function unit is fully pipelined, a new operation
that takes multiple clock cycles to finish can be started
in every clock cycle. On the other hand, a pipeline can
be such that it does not always accept new operation start
requests while an old one is still executing.
Data memory access and communication to outside of
the processor is handled by using special function units.
Function units that implement memory accessing opera-
tions and connect to a memory module are often called
load/store units.

3.2.2 Control unit

Control unit is a special case of function units which con-
trols execution of programs. Control unit has access to
the instruction memory in order to fetch the instructions
to be executed. In order to allow the executed programs
to transfer the execution (jump) to an arbitrary position
in the executed program, control unit provides control
flow operations. A control unit usually has an instruction
pipeline, which consists of stages for fetching, decoding
and executing program instructions.

3.2.3 Register files

Register files contain general purpose registers, which are
used to store variables in programs. Like function units,
also register files have input and output ports. The num-
ber of read and write ports, that is, the capability of being
able to read and write multiple registers in a same clock
cycle, can vary in each register file.

3.2.4 Transport buses and sockets

Interconnect architecture consists of transport buses
which are connected to function unit ports by means of
sockets. Due to expense of connectivity, it is usual to re-
duce the number of connections between units (function
units and register files). A TTA is said to be fully con-
nected in case there is a path from each unit output port

to every unit’s input ports.
Sockets provide means for programming TTA processors
by allowing to select which bus-to-port connections of the
socket are enabled at any time instant. Thus, data trans-
ports taking place in a clock cycle can be programmed
by defining the source and destination socket/port con-
nection to be enabled for each bus.
Conditional execution is implemented with the aid of
guards. Each data transport can be conditionalized by
a guard, which is connected to a register (often a 1-bit
conditional register) and to a bus. In case the value of the
guarded register evaluates to false (zero), the data trans-
port programmed for the bus the guard is connected to is
squashed, that is, not written to its destination. Uncondi-
tional data transports are not connected to any guard and
are always executed.

3.3 Programming

In more traditional processor architectures, a processor is
usually programmed by defining the executed operations
and their operands. For example, an addition instruction
in a RISC architecture could look like the following.
add r3, r1, r2
This example operation adds the values of general-
purpose registers r1 and r2 and stores the result in reg-
ister r3. Coarsely, the execution of the instruction in the
processor probably results in translating the instruction to
control signals which control the interconnection network
connections and function units. The interconnection net-
work is used to transfer the current values of registers r1
and r2 to the function unit that is capable of executing the
add operation, often called ALU as in Arithmetic-Logic
Unit. Finally, a control signal selects and triggers the ad-
dition operation in ALU, of which result is transferred
back to the register r3.
TTA programs do not define the operations, but only the
data transports needed to write and read the operand val-
ues. Operation itself is triggered by writing data to a trig-
gering operand of an operation. Thus, an operation is
executed as a side effect of the triggering data transport.
Therefore, executing an addition operation in TTA re-
quires three data transport definitions, also called moves.
Amove defines endpoints for a data transport taking place
in a transport bus. For instance, a move can state that a
data transport from function unit F, port 1, to register file
R, register index 2, should take place in bus B1. In case
there are multiple buses in the target processor, each bus
can be utilized in parallel in the same clock cycle. Thus,
it is possible to exploit data transport level parallelism by
scheduling several data transports in the same instruction.
An addition operation can be executed in a TTA proces-
sor as follows:
r1 -> ALU.operand1 r2 -> ALU.add.trigger ALU.result

https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Clock_cycle
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/General_purpose_register
https://en.wikipedia.org/wiki/Interconnect_architecture
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Conditional_execution
https://en.wikipedia.org/wiki/Conditional_register

3.6. SEE ALSO 5

-> r3
The second move, a write to the second operand of the
function unit called ALU, triggers the addition operation.
This makes the result of addition available in the output
port 'result' after the execution latency of the 'add'.
The ports associated with the ALU may act as an
accumulator, allowing creation of macro instructions that
abstract away the underlying TTA:
lda r1 ; “load ALU": move value to ALU operand 1 add
r2 ; add: move value to add trigger sta r3 ; “store ALU":
move value from ALU result

3.4 Programmer visible operation
latency

The leading philosophy of TTAs is to move complexity
from hardware to software. Due to this, several additional
hazards are introduced to the programmer. One of them
is delay slots, the programmer visible operation latency of
the function units. Timing is completely a responsibility
of programmer. The programmer has to schedule the in-
structions such that the result is neither read too early nor
too late. There is no hardware detection to lock up the
processor in case a result is read too early. Consider, for
example, an architecture that has an operation add with
latency of 1, and operation mul with latency of 3. When
triggering the add operation, it is possible to read the re-
sult in the next instruction (next clock cycle), but in case
of mul, one has to wait for two instructions before the re-
sult can be read. The result is ready for the 3rd instruction
after the triggering instruction.
Reading a result too early results in reading the result of
a previously triggered operation, or in case no operation
was triggered previously in the function unit, the read
value is undefined. On the other hand, result must be read
early enough to make sure the next operation result does
not overwrite the yet unread result in the output port.
Due to the abundance of programmer-visible processor
context which practically includes, in addition to regis-
ter file contents, also function unit pipeline register con-
tents and/or function unit input and output ports, context
saves required for external interrupt support can become
complex and expensive to implement in a TTA proces-
sor. Therefore, interrupts are usually not supported by
TTA processors, but their task is delegated to an external
hardware (e.g., an I/O processor) or their need is avoided
by using an alternative synchronization/communication
mechanism such as polling.

3.5 Implementations
• MAXQ[2][3]

Currently, the only commercially available mi-
crocontroller built upon (though not “featur-
ing”) Transport Triggered Architecture is from
Dallas Semiconductor. However, it is an OISC
or "one instruction set computer", offering
but a single though flexible MOVE instruc-
tion, which can then function as various vir-
tual instructions by moving values directly to
the program counter.

• The “move project” has designed and fabricated sev-
eral experimental TTA microprocessors.

• The TCE project is a re-implementation of the
MOVE tools. The tools are available as open source,
and the compiler is built around the LLVM compiler
framework.[4][5]

• The architecture of the Amiga Copper has all the
basic features of a transport triggered architecture.

• TheAble processor developed by New England Dig-
ital.

• The WireWorld based computer.

• Dr. Dobb’s published One-Der a 32-bit TTA in
Verilog with a matching cross assembler and Forth
compiler.[6][7]

• Mali (200/400) vertex processor, uses a 128-bit in-
struction word single precision floating point scalar
TTA.

3.6 See also

• Application-specific instruction-set processor
(ASIP)

• Very long instruction word (VLIW)

• Explicitly parallel instruction computing (EPIC)

• Dataflow architecture

3.7 References
[1] V. Guzma, P. Jääskeläinen, P. Kellomäki, and J. Takala,

“Impact of Software Bypassing on Instruction Level Par-
allelism and Register File Traffic”

[2] “MAXQ Family User’s Guide”. Section “1.1 Instruction
Set” says “A register-based, transport-triggered architec-
ture allows all instructions to be coded as simple transfer
operations. All instructions reduce to either writing an
immediate value to a destination register or memory lo-
cation or moving data between registers and/or memory
locations.”

https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/Macro_instruction
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Delay_slot
https://en.wikipedia.org/wiki/MAXQ_(Microcontroller)
https://en.wikipedia.org/wiki/Dallas_Semiconductor
https://en.wikipedia.org/wiki/One_instruction_set_computer
https://en.wikipedia.org/wiki/Program_counter
http://ce.et.tudelft.nl/MOVE/
http://tce.cs.tut.fi/
https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/Original_Amiga_chipset#Copper
http://sites.google.com/site/macthenaief/Home/retro/able
https://en.wikipedia.org/wiki/WireWorld
http://www.quinapalus.com/wi-index.html
http://www.drdobbs.com/embedded-systems/221800122
https://en.wikipedia.org/wiki/Mali_(GPU)
https://en.wikipedia.org/wiki/Application-specific_instruction-set_processor
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Explicitly_parallel_instruction_computing
https://en.wikipedia.org/wiki/Dataflow_architecture
http://www.maxim-ic.com/MAXQUG

6 CHAPTER 3. TRANSPORT TRIGGERED ARCHITECTURE

[3] Introduction to the MAXQ Architecture – Includes trans-
fer map diagram

[4] TTA Codesign Environment, an open source (MIT li-
censed) toolset for design of application specific TTA pro-
cessors.

[5] Article about TTAs, explaining how the TTA-based
Codesign Environment project uses LLVM

[6] Dr. Dobb’s article with 32-bit FPGA CPU in Verilog

[7] Web site with more details on the Dr. Dobb’s CPU

3.8 External links
• MOVEproject: Automatic Synthesis of Application
Specific Processors

• Advantages of transport-triggered architec-
tures

• Microprocessor Architectures from VLIW to TTA

• BYTE overview article

http://www.maxim-ic.com/appnotes.cfm/appnote_number/3222
http://tce.cs.tut.fi/
http://tce.cs.tut.fi/
http://tce.cs.tut.fi/
http://blog.llvm.org/2010/06/tce-project-co-design-of-application.html
https://en.wikipedia.org/wiki/LLVM
http://www.ddj.com/embedded/221800122?pgno=1
http://www.one-der-cpu.info/
http://ce-serv.et.tudelft.nl/MOVE/
http://ce-serv.et.tudelft.nl/MOVE/
http://ce-serv.et.tudelft.nl/MOVE/section3.3.html
http://ce-serv.et.tudelft.nl/MOVE/section3.3.html
http://www.ics.ele.tue.nl/~heco/documents/TTAbook/TTAbook.html
http://web.archive.org/web/20071013182106/http://byte.com/art/9502/sec13/art1.htm

3.9. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 7

3.9 Text and image sources, contributors, and licenses

3.9.1 Text
• MCU Source: https://en.wikipedia.org/wiki/MCU?oldid=706674302 Contributors: DopefishJustin, Shizhao, Rfc1394, Pengo, Soman,

CanisRufus, CyberSkull, RJFJR, Zntrip, Lapunkd, Yuriybrisk, Zbxgscqf, Nihiltres, Chobot, YurikBot, Durval, Zyxw, ERcheck, Blue-
bot, TimBentley, Fishhead64, Gobonobo, Woodshed, Thijs!bot, Jasonbrouwer, STBot, WarthogDemon, Mikael Häggström, Mentally
Challenged University, Marlene Sinclair, AlleborgoBot, Dsmcu, Rilak, FaithLehaneTheVampireSlayer, Addbot, Shimito, Walruse, De-
pictionimage, FrescoBot, Harry Audus, Zollerriia, Onamreh, ClueBot NG, Iamozy, Mmontgomry, Twittelator and Anonymous: 34

• Application-specific instruction set processor Source: https://en.wikipedia.org/wiki/Application-specific_instruction_set_processor?
oldid=673432181 Contributors: Bamakhrama, Tweenk, ZeroOne, Intgr, RussBot, Toffile, Rwwww, SmackBot, PekkaJ, FollowTheMedia,
Underpants, Kozuch, EnOreg, Addbot, Dawynn, SpBot, Steven G Cox, AnomieBOT, I dream of horses, AndyHe829, Drdirkd, DrMK-
JainMLSU, Foia req, Shahriar.cwc and Anonymous: 5

• Transport triggered architecture Source: https://en.wikipedia.org/wiki/Transport_triggered_architecture?oldid=710636714 Contribu-
tors: Damian Yerrick, Shd~enwiki, DavidCary, Abdull, ZeroOne, Pearle, Alansohn, Kri, Rmky87, Cedar101, Rwwww, Chris Chittlebor-
ough, SmackBot, PekkaJ, VladoG~enwiki, JonHarder, Cybercobra, 16@r, UncleDouggie, Raysonho, Yettie0711, WhatamIdoing, Tekno-
munk, Hugh16, EnOreg, MarkMLl,Wikicat, SilvonenBot, MystBot, PerttiK, Addbot, Yobot, MinimanDragon32, Txt.file, John of Reading,
ZéroBot, BG19bot, Comp.arch and Anonymous: 19

3.9.2 Images
• File:Disambig_gray.svg Source: https://upload.wikimedia.org/wikipedia/en/5/5f/Disambig_gray.svg License: Cc-by-sa-3.0 Contributors:

? Original artist: ?
• File:Microelectronics_stub.svg Source: https://upload.wikimedia.org/wikipedia/commons/c/c3/Microelectronics_stub.svg Li-
cense: LGPL Contributors: Integrated circuit icon.svg: <a href='//commons.wikimedia.org/wiki/File:Integrated_circuit_icon.svg'
class='image'><img alt='Integrated circuit icon.svg' src='https://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Integrated_
circuit_icon.svg/50px-Integrated_circuit_icon.svg.png' width='50' height='50' srcset='https://upload.wikimedia.org/wikipedia/commons/
thumb/8/8c/Integrated_circuit_icon.svg/75px-Integrated_circuit_icon.svg.png 1.5x, https://upload.wikimedia.org/wikipedia/commons/
thumb/8/8c/Integrated_circuit_icon.svg/100px-Integrated_circuit_icon.svg.png 2x' data-file-width='180' data-file-height='180' />
Original artist: Integrated_circuit_icon.svg: Everaldo Coelho and YellowIcon

• File:Text_document_with_red_question_mark.svg Source: https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_
with_red_question_mark.svg License: Public domain Contributors: Created by bdesham with Inkscape; based upon Text-x-generic.svg
from the Tango project. Original artist: Benjamin D. Esham (bdesham)

• File:Transport_Triggered_Architecture.png Source: https://upload.wikimedia.org/wikipedia/en/9/96/Transport_Triggered_
Architecture.png License: Cc-by-sa-3.0 Contributors: ? Original artist: ?

3.9.3 Content license
• Creative Commons Attribution-Share Alike 3.0

https://en.wikipedia.org/wiki/MCU?oldid=706674302
https://en.wikipedia.org/wiki/Application-specific_instruction_set_processor?oldid=673432181
https://en.wikipedia.org/wiki/Application-specific_instruction_set_processor?oldid=673432181
https://en.wikipedia.org/wiki/Transport_triggered_architecture?oldid=710636714
https://upload.wikimedia.org/wikipedia/en/5/5f/Disambig_gray.svg
https://upload.wikimedia.org/wikipedia/commons/c/c3/Microelectronics_stub.svg
//commons.wikimedia.org/wiki/File:Integrated_circuit_icon.svg
//commons.wikimedia.org/wiki/File:Integrated_circuit_icon.svg
http://www.yellowicon.com/
https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
//commons.wikimedia.org/wiki/User:Bdesham
//commons.wikimedia.org/wiki/File:Text-x-generic.svg
//commons.wikimedia.org/wiki/User:Bdesham
https://upload.wikimedia.org/wikipedia/en/9/96/Transport_Triggered_Architecture.png
https://upload.wikimedia.org/wikipedia/en/9/96/Transport_Triggered_Architecture.png
https://creativecommons.org/licenses/by-sa/3.0/

	MCU
	Arts & entertainment
	Organizations
	Science and technology
	Universities
	Other

	Application-specific instruction set processor
	References
	Literature
	External links

	Transport triggered architecture
	Benefits in comparison to VLIW Architectures
	Structure
	Function unit
	Control unit
	Register files
	Transport buses and sockets

	Programming
	Programmer visible operation latency
	Implementations
	See also
	References
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

