
Architecture 1
CISC, RISC, VLIW, Dataflow

Contents

1 Computer architecture 1
1.1 History . 1
1.2 Subcategories . 1
1.3 Roles . 2

1.3.1 Definition . 2
1.3.2 Instruction set architecture . 2
1.3.3 Computer organization . 3
1.3.4 Implementation . 3

1.4 Design goals . 3
1.4.1 Performance . 3
1.4.2 Power consumption . 4
1.4.3 Shifts in market demand . 4

1.5 See also . 4
1.6 Notes . 4
1.7 References . 5
1.8 External links . 5

2 Complex instruction set computing 6
2.1 Historical design context . 6

2.1.1 Incitements and benefits . 6
2.1.2 Design issues . 7

2.2 See also . 8
2.3 Notes . 8
2.4 References . 8
2.5 Further reading . 8
2.6 External links . 8

3 Reduced instruction set computing 9
3.1 History and development . 9
3.2 Characteristics and design philosophy . 11

3.2.1 Instruction set philosophy . 11
3.2.2 Instruction format . 11
3.2.3 Hardware utilization . 11

i

ii CONTENTS

3.3 Comparison to other architectures . 13
3.4 Use of RISC architectures . 13

3.4.1 Low end and mobile systems . 14
3.4.2 High end RISC and supercomputing . 14

3.5 See also . 14
3.6 References . 14
3.7 External links . 15

4 History of general-purpose CPUs 16
4.1 1950s: early designs . 16
4.2 1960s: the computer revolution and CISC . 17
4.3 1970s: Large Scale Integration . 17
4.4 Early 1980s: the lessons of RISC . 18
4.5 Mid-to-late 1980s: exploiting instruction level parallelism . 19
4.6 1990 to today: looking forward . 19

4.6.1 VLIW and EPIC . 20
4.6.2 Multi-threading . 20
4.6.3 Multi-core . 20
4.6.4 Reconfigurable logic . 21
4.6.5 Open source processors . 21
4.6.6 Asynchronous CPUs . 21
4.6.7 Optical communication . 21
4.6.8 Optical processors . 21
4.6.9 Belt Machine Architecture . 22

4.7 Timeline of events . 22
4.8 See also . 22
4.9 References . 22
4.10 External links . 23

5 Processor design 24
5.1 Details . 24

5.1.1 Micro-architectural concepts . 25
5.1.2 Research topics . 25
5.1.3 Performance analysis and benchmarking . 25

5.2 Markets . 25
5.2.1 General purpose computing . 26
5.2.2 Scientific computing . 26
5.2.3 Embedded design . 26

5.3 See also . 27
5.4 References . 27

6 Very long instruction word 28

CONTENTS iii

6.1 Overview . 28
6.2 Motivation . 28
6.3 Design . 28
6.4 History . 29
6.5 Implementations . 30
6.6 Backward compatibility . 30
6.7 See also . 31
6.8 References . 31
6.9 External links . 31

7 Dataflow architecture 32
7.1 History . 32
7.2 Dataflow architecture topics . 32

7.2.1 Static and dynamic dataflow machines . 32
7.2.2 Compiler . 32
7.2.3 Programs . 33
7.2.4 Instructions . 33

7.3 See also . 33
7.4 References . 33

8 Systolic array 34
8.1 Applications . 34
8.2 Architecture . 34
8.3 Goals and benefits . 34
8.4 Classification controversy . 35
8.5 Detailed description . 35
8.6 History . 35
8.7 Application example . 35
8.8 Advantages and disadvantages . 35
8.9 Implementations . 36
8.10 See also . 36
8.11 Notes . 36
8.12 References . 36
8.13 External links . 36
8.14 Text and image sources, contributors, and licenses . 37

8.14.1 Text . 37
8.14.2 Images . 38
8.14.3 Content license . 39

Chapter 1

Computer architecture

MemoryPC

A
d

d
e
r

Register
File

Sign
Extend

IF / ID

ID
 / E

X

Imm

RS1

RS2
Zero?

ALU

M
U

X

E
X

 / M
E
M

Memory
M

U
X

M
E
M

 / W
B

M
U

X

M
U

X

Next SEQ PC Next SEQ PC

WB Data

Branch
taken

IR

Instruction Fetch

Next PC

Instruction Decode
Register Fetch

Execute
Address Calc.

Memory Access Write Back

IF ID EX MEM WB

Pipelined implementation of MIPS architecture. Pipelining is a
key concept in computer architecture.

In computer engineering, computer architecture is a
set of rules and methods that describe the functionality,
organization, and implementation of computer systems.
Some definitions of architecture define it as describing
the capabilities and programming model of a computer
but not a particular implementation.[1] In other descrip-
tions computer architecture involves instruction set ar-
chitecture design, microarchitecture design, logic design,
and implementation.[2]

1.1 History

The first documented computer architecture was in
the correspondence between Charles Babbage and Ada
Lovelace, describing the analytical engine. Two other
early and important examples were:

• John von Neumann's 1945 paper, First Draft of a
Report on the EDVAC, which described an organi-
zation of logical elements; and

• Alan Turing's more detailed Proposed Electronic
Calculator for the Automatic Computing Engine,
also 1945 and which cited von Neumann’s paper.[3]

The term “architecture” in computer literature can be
traced to the work of Lyle R. Johnson, Mohammad Us-
man Khan and Frederick P. Brooks, Jr., members in 1959
of the Machine Organization department in IBM’s main

research center. Johnson had the opportunity to write a
proprietary research communication about the Stretch, an
IBM-developed supercomputer for Los Alamos National
Laboratory (at the time known as Los Alamos Scientific
Laboratory). To describe the level of detail for discussing
the luxuriously embellished computer, he noted that his
description of formats, instruction types, hardware pa-
rameters, and speed enhancements were at the level of
“system architecture” – a term that seemed more useful
than “machine organization.”
Subsequently, Brooks, a Stretch designer, started Chap-
ter 2 of a book (Planning a Computer System: Project
Stretch, ed. W. Buchholz, 1962) by writing,

Computer architecture, like other architec-
ture, is the art of determining the needs of the
user of a structure and then designing to meet
those needs as effectively as possible within
economic and technological constraints.

Brooks went on to help develop the IBM System/360
(now called the IBM zSeries) line of computers, in which
“architecture” became a noun defining “what the user
needs to know”. Later, computer users came to use the
term in many less-explicit ways.
The earliest computer architectures were designed on pa-
per and then directly built into the final hardware form.[4]

Later, computer architecture prototypes were physically
built in the form of a transistor–transistor logic (TTL)
computer—such as the prototypes of the 6800 and the
PA-RISC—tested, and tweaked, before committing to
the final hardware form. As of the 1990s, new computer
architectures are typically “built”, tested, and tweaked—
inside some other computer architecture in a computer
architecture simulator; or inside a FPGA as a soft micro-
processor; or both—before committing to the final hard-
ware form.

1.2 Subcategories

The discipline of computer architecture has three main
subcategories:[5]

1

https://en.wikipedia.org/wiki/MIPS_instruction_set
https://en.wikipedia.org/wiki/Pipelining
https://en.wikipedia.org/wiki/Computer_engineering
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Logic_design
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Analytical_engine
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
https://en.wikipedia.org/wiki/Alan_M._Turing
https://en.wikipedia.org/wiki/Automatic_Computing_Engine
https://en.wikipedia.org/wiki/Fred_Brooks
https://en.wikipedia.org/wiki/IBM_7030_Stretch
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
https://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/IBM_zSeries
https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Motorola_6800#Development_team
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Computer_architecture_simulator
https://en.wikipedia.org/wiki/Computer_architecture_simulator
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/Soft_microprocessor

2 CHAPTER 1. COMPUTER ARCHITECTURE

1. Instruction Set Architecture, or ISA. The ISA de-
fines the machine code that a processor reads and
acts upon as well as the word size, memory address
modes, processor registers, and data type.

2. Microarchitecture, or computer organization de-
scribes how a particular processor will implement
the ISA.[6] The size of a computer’s CPU cache for
instance, is an issue that generally has nothing to do
with the ISA.

3. System Design includes all of the other hardware
components within a computing system. These in-
clude:

(a) Data processing other than the CPU, such as
direct memory access (DMA)

(b) Other issues such as virtualization,
multiprocessing, and software features.

There are other types of computer architecture. The fol-
lowing types are used in bigger companies like Intel, and
count for 1% of all of computer architecture

• Macroarchitecture: architectural layers more ab-
stract than microarchitecture

• Assembly Instruction Set Architecture (ISA): A
smart assembler may convert an abstract assem-
bly language common to a group of machines into
slightly different machine language for different
implementations

• Programmer Visible Macroarchitecture: higher
level language tools such as compilers may define a
consistent interface or contract to programmers us-
ing them, abstracting differences between underly-
ing ISA, UISA, and microarchitectures. E.g. the C,
C++, or Java standards define different Programmer
Visible Macroarchitecture.

• UISA (Microcode Instruction Set Architecture)—
a group of machines with different hardware level
microarchitectures may share a common microcode
architecture, and hence a UISA.

• Pin Architecture: The hardware functions that a
microprocessor should provide to a hardware plat-
form, e.g., the x86 pins A20M, FERR/IGNNE or
FLUSH. Also, messages that the processor should
emit so that external caches can be invalidated (emp-
tied). Pin architecture functions are more flexible
than ISA functions because external hardware can
adapt to new encodings, or change from a pin to a
message. The term “architecture” fits, because the
functions must be provided for compatible systems,
even if the detailed method changes.

1.3 Roles

1.3.1 Definition

The purpose is to design a computer that maximizes per-
formance while keeping power consumption in check,
costs low relative to the amount of expected performance,
and is also very reliable. For this, many aspects are to be
considered which includes Instruction Set Design, Func-
tional Organization, Logic Design, and Implementation.
The implementation involves Integrated Circuit Design,
Packaging, Power, and Cooling. Optimization of the de-
sign requires familiarity with Compilers, Operating Sys-
tems to Logic Design and Packaging.

1.3.2 Instruction set architecture

Main article: Instruction set architecture

An instruction set architecture (ISA) is the interface be-
tween the computer’s software and hardware and also
can be viewed as the programmer’s view of the machine.
Computers do not understand high level languages such
as Java, C++, or most programming languages used. A
processor only understands instructions encoded in some
numerical fashion, usually as binary numbers. Software
tools, such as compilers, translate those high level lan-
guages into instructions that the processor can under-
stand.
Besides instructions, the ISA defines items in the com-
puter that are available to a program—e.g. data types,
registers, addressing modes, and memory. Instructions
locate these available items with register indexes (or
names) and memory addressing modes.
The ISA of a computer is usually described in a small
instruction manual, which describes how the instruc-
tions are encoded. Also, it may define short (vaguely)
mnemonic names for the instructions. The names can
be recognized by a software development tool called
an assembler. An assembler is a computer program
that translates a human-readable form of the ISA into a
computer-readable form. Disassemblers are also widely
available, usually in debuggers and software programs to
isolate and correct malfunctions in binary computer pro-
grams.
ISAs vary in quality and completeness. A good ISA
compromises between programmer convenience (how
easy the code is to understand), size of the code (how
much code is required to do a specific action), cost of
the computer to interpret the instructions (more com-
plexity means more space needed to disassemble the in-
structions), and speed of the computer (with larger dis-
semblers comes longer disassemble time). For exam-
ple, single-instruction ISAs like an ISA that subtracts one
from a value and if the value is zero then the value returns

https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Word_size
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Data_formats
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Systems_design
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Architectural_layer
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/High_level_language
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Assembler_(computer_programming)
https://en.wikipedia.org/wiki/Disassembler
https://en.wikipedia.org/wiki/Debugger

1.4. DESIGN GOALS 3

to a higher value are both inexpensive, and fast, however
ISAs like that are not convenient or helpful when looking
at the size of the ISA. Memory organization defines how
instructions interact with the memory, and how memory
interacts with itself.
During design emulation software (emulators) can run
programs written in a proposed instruction set. Modern
emulators can measure size, cost, and speed to determine
if a particular ISA is meeting its goals.

1.3.3 Computer organization

Main article: Microarchitecture

Computer organization helps optimize performance-
based products. For example, software engineers need
to know the processing power of processors. They may
need to optimize software in order to gain the most per-
formance for the lowest price. This can require quite de-
tailed analysis of the computer’s organization. For exam-
ple, in a SD card, the designers might need to arrange the
card so that the most data can be processed in the fastest
possible way.
Computer organization also helps plan the selection of a
processor for a particular project. Multimedia projects
may need very rapid data access, while virtual machines
may need fast interrupts. Sometimes certain tasks need
additional components as well. For example, a computer
capable of running a virtual machine needs virtual mem-
ory hardware so that the memory of different virtual com-
puters can be kept separated. Computer organization
and features also affect power consumption and processor
cost.

1.3.4 Implementation

Once an instruction set and micro-architecture are de-
signed, a practical machine must be developed. This de-
sign process is called the implementation. Implementation
is usually not considered architectural design, but rather
hardware design engineering. Implementation can be fur-
ther broken down into several steps:

• Logic Implementation designs the circuits required
at a logic gate level

• Circuit Implementation does transistor-level de-
signs of basic elements (gates, multiplexers, latches
etc.) as well as of some larger blocks (ALUs, caches
etc.) that may be implemented at the log gate level,
or even at the physical level if the design calls for it.

• Physical Implementation draws physical circuits.
The different circuit components are placed in a
chip floorplan or on a board and the wires connect-
ing them are created.

• Design Validation tests the computer as a whole to
see if it works in all situations and all timings. Once
the design validation process starts, the design at the
logic level are tested using logic emulators. How-
ever, this is usually too slow to run realistic test. So,
after making corrections based on the first test, pro-
totypes are constructed using Field-Programmable
Gate-Arrays (FPGAs). Most hobby projects stop at
this stage. The final step is to test prototype inte-
grated circuits. Integrated circuits may require sev-
eral redesigns to fix problems.

For CPUs, the entire implementation process is organized
differently and is often referred too as CPU design.

1.4 Design goals

The exact form of a computer system depends on the con-
straints and goals. Computer architectures usually trade
off standards, power versus performance, cost, mem-
ory capacity, latency (latency is the amount of time that
it takes for information from one node to travel to the
source) and throughput. Sometimes other considerations,
such as features, size, weight, reliability, and expandabil-
ity are also factors.
The most common scheme does an in depth power anal-
ysis and figures out how to keep power consumption low,
while maintaining adequate performance.

1.4.1 Performance

Modern computer performance is often described in IPC
(instructions per cycle). This measures the efficiency of
the architecture at any refresh rate. Since a faster rate
can make a faster computer, this is a useful measurement.
Older computers had IPC counts as low as 0.1 instructions
per cycle. Simple modern processors easily reach near
1. Superscalar processors may reach three to five IPC
by executing several instructions per refresh. Multicore
and vector processing CPUs can multiply this further by
acting on a lot of data per instruction, which have several
CPU cores executing in parallel.
Counting machine language instructions would be mis-
leading because they can do varying amounts of work in
different ISAs. The “instruction” in the standard mea-
surements is not a count of the ISA’s actual machine lan-
guage instructions, but a unit of measurement, usually
based on the speed of the VAX computer architecture.
Many people used to measure a computer’s speed by the
clock rate (usually in MHz or GHz). This refers to the cy-
cles per second of the main clock of the CPU. However,
this metric is somewhat misleading, as a machine with a
higher clock rate may not necessarily have greater per-
formance. As a result, manufacturers have moved away
from clock speed as a measure of performance.

https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Engineering_design_process
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Floorplan_(microelectronics)
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Instructions_per_cycle
https://en.wikipedia.org/wiki/Instructions_per_cycle
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/VAX

4 CHAPTER 1. COMPUTER ARCHITECTURE

Other factors influence speed, such as the mix of
functional units, bus speeds, available memory, and the
type and order of instructions in the programs.
In a typical home computer, the simplest, most reliable
way to speed performance is usually to add random access
memory (RAM). More RAM increases the likelihood
that needed data or a program is stored in the RAM—
so the system is less likely to need to move memory data
from the disk. The reason why RAM is important is be-
cause in a HDD (Hard disk drive) you have physical mov-
ing parts that you would need to move to acsess certain
parts of a memory. SSD (Solid state drive) are faster than
HDD but they still are much slower than the read/write
speed of RAM.
There are two main types of speed: latency and through-
put. Latency is the time between the start of a process and
its completion. Throughput is the amount of work done
per unit time. Interrupt latency is the guaranteed maxi-
mum response time of the system to an electronic event
(like when the disk drive finishes moving some data).
Performance is affected by a very wide range of design
choices — for example, pipelining a processor usually
makes latency worse, but makes throughput better. Com-
puters that control machinery usually need low interrupt
latencies. These computers operate in a real-time en-
vironment and fail if an operation is not completed in
a specified amount of time. For example, computer-
controlled anti-lock brakes must begin braking within a
predictable, short time after the brake pedal is sensed or
else failure of the brake will occur.
Benchmarking takes all these factors into account by
measuring the time a computer takes to run through a
series of test programs. Although benchmarking shows
strengths, it shouldn't be how you choose a computer. Of-
ten the measured machines split on different measures.
For example, one system might handle scientific appli-
cations quickly, while another might render video games
more smoothly. Furthermore, designers may target and
add special features to their products, through hardware
or software, that permit a specific benchmark to execute
quickly but don't offer similar advantages to general tasks.

1.4.2 Power consumption

Main article: Low-power electronics

Power consumption is another measurement that is im-
portant in modern computers. Power efficiency can often
be traded for speed or lower cost. The typical measure-
ment when referring to power consumption in Computer
Architecture is MIPS/W (millions of instructions per sec-
ond per watt).
Modern circuits have less power required per transistor
as the number of transistors per chip grows. This is be-
cause each transistor that is in a new chip requires its own

power supply. Therefore, power efficiency has increased
in importance over time. Recent processor designs such
as Intel’s Haswell (microarchitecture), put more emphasis
on increasing power efficiency. Also, in the world of em-
bedded computing, power efficiency has long been and
remains an important goal next to throughput and latency.

1.4.3 Shifts in market demand

Increases in publicly released refresh rates have grown
slowly over the past few years, with respect to vast leaps
in power consumption reduction and miniaturization de-
mand. Compared to the processing speed increase of 3
GHz to 4 GHz (2006 too 2014), a new demand for more
battery life and reductions in size is the current focus be-
cause of the mobile technology being produced. This
change in focus can be shown by the significant reduc-
tions in power consumption, as much as 50%, that were
reported by Intel in their release of the Haswell (microar-
chitecture); where they dropped their benchmark down
to 10-20 watts vs. 30-40 watts in the previous model.

1.5 See also
• Comparison of CPU architectures

• Computer hardware

• CPU design

• Floating point

• Harvard architecture

• Influence of the IBM PC on the personal computer
market

• Orthogonal instruction set

• Software architecture

• von Neumann architecture

1.6 Notes
• John L. Hennessy and David Patterson (2006).
Computer Architecture: A Quantitative Approach
(Fourth ed.). Morgan Kaufmann. ISBN 978-0-12-
370490-0.

• Barton, Robert S., “Functional Design of Comput-
ers”, Communications of the ACM 4(9): 405 (1961).

• Barton, Robert S., “A New Approach to the Func-
tional Design of a Digital Computer”, Proceedings
of the Western Joint Computer Conference, May
1961, pp. 393–396. About the design of the Bur-
roughs B5000 computer.

https://en.wikipedia.org/wiki/Functional_unit
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Interrupt_latency
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Benchmark_(computing)
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Haswell_(microarchitecture)
https://en.wikipedia.org/wiki/Haswell_(microarchitecture)
https://en.wikipedia.org/wiki/Haswell_(microarchitecture)
https://en.wikipedia.org/wiki/Comparison_of_CPU_architectures
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Influence_of_the_IBM_PC_on_the_personal_computer_market
https://en.wikipedia.org/wiki/Influence_of_the_IBM_PC_on_the_personal_computer_market
https://en.wikipedia.org/wiki/Orthogonal_instruction_set
https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/John_L._Hennessy
https://en.wikipedia.org/wiki/David_Patterson_(scientist)
http://www.elsevierdirect.com/product.jsp?isbn=9780123704900
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-370490-0
https://en.wikipedia.org/wiki/Special:BookSources/978-0-12-370490-0
https://en.wikipedia.org/wiki/Robert_S._Barton
https://en.wikipedia.org/wiki/Burroughs_large_systems

1.8. EXTERNAL LINKS 5

• Bell, C. Gordon; and Newell, Allen (1971).
“Computer Structures: Readings and Examples”,
McGraw-Hill.

• Blaauw, G.A., and Brooks, F.P., Jr., “The Structure
of System/360, Part I-Outline of the Logical Struc-
ture”, IBM Systems Journal, vol. 3, no. 2, pp. 119–
135, 1964.

• Tanenbaum, Andrew S. (1979). Structured Com-
puter Organization. Englewood Cliffs, New Jersey:
Prentice-Hall. ISBN 0-13-148521-0.

1.7 References
[1] Clements, Alan. Principles of Computer Hardware

(Fourth ed.). p. 1. Architecture describes the internal
organization of a computer in an abstract way; that is, it
defines the capabilities of the computer and its program-
ming model. You can have two computers that have been
constructed in different ways with different technologies
but with the same architecture.

[2] Hennessy, John; Patterson, David. Computer Architecture:
A Quantitative Approach (Fifth ed.). p. 11. This task has
many aspects, including instruction set design, functional
organization, logic design, and implementation.

[3] Reproduced in B. J. Copeland (Ed.), “Alan Turing’s Au-
tomatic Computing Engine”, OUP, 2005, pp. 369-454.

[4] ACE underwent seven paper designs in one year, before a
prototype was initiated in 1948. [B. J. Copeland (Ed.),
“Alan Turing’s Automatic Computing Engine”, OUP,
2005, p. 57]

[5] John L. Hennessy and David A. Patterson. Computer Ar-
chitecture: A Quantitative Approach (Third ed.). Morgan
Kaufmann Publishers.

[6] Laplante, Phillip A. (2001). Dictionary of Computer Sci-
ence, Engineering, and Technology. CRC Press. pp. 94–
95. ISBN 0-8493-2691-5.

1.8 External links

• ISCA: Proceedings of the International Symposium
on Computer Architecture

• Micro: IEEE/ACM International Symposium on
Microarchitecture

• HPCA: International Symposium on High Perfor-
mance Computer Architecture

• ASPLOS: International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems

• ACM Transactions on Computer Systems

• ACM Transactions on Architecture and Code Opti-
mization

• IEEE Transactions on Computers

• The von Neumann Architecture of Computer Sys-
tems

https://en.wikipedia.org/wiki/Gordon_Bell
https://en.wikipedia.org/wiki/Allen_Newell
http://research.microsoft.com/en-us/um/people/gbell/Computer_Structures__Readings_and_Examples/contents.html
https://en.wikipedia.org/wiki/Gerrit_Blaauw
https://en.wikipedia.org/wiki/Fred_Brooks
http://domino.research.ibm.com/tchjr/journalindex.nsf/d9f0a910ab8b637485256bc80066a393/95dc427e3fd3024a85256bfa006859f7?OpenDocument
http://domino.research.ibm.com/tchjr/journalindex.nsf/d9f0a910ab8b637485256bc80066a393/95dc427e3fd3024a85256bfa006859f7?OpenDocument
http://domino.research.ibm.com/tchjr/journalindex.nsf/d9f0a910ab8b637485256bc80066a393/95dc427e3fd3024a85256bfa006859f7?OpenDocument
https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
https://en.wikipedia.org/wiki/Englewood_Cliffs,_New_Jersey
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-148521-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-8493-2691-5
http://portal.acm.org/toc.cfm?id=SERIES416&type=series&coll=GUIDE&dl=GUIDE&CFID=41492512&CFTOKEN=82922478
http://portal.acm.org/toc.cfm?id=SERIES416&type=series&coll=GUIDE&dl=GUIDE&CFID=41492512&CFTOKEN=82922478
http://www.microarch.org/
http://www.microarch.org/
http://www.hpcaconf.org/
http://www.hpcaconf.org/
http://portal.acm.org/toc.cfm?id=SERIES311&type=series&coll=GUIDE&dl=GUIDE&CFID=41492415&CFTOKEN=3676847
http://portal.acm.org/toc.cfm?id=SERIES311&type=series&coll=GUIDE&dl=GUIDE&CFID=41492415&CFTOKEN=3676847
http://portal.acm.org/toc.cfm?id=SERIES311&type=series&coll=GUIDE&dl=GUIDE&CFID=41492415&CFTOKEN=3676847
http://www.acm.org/tocs/
http://www.acm.org/taco/
http://www.acm.org/taco/
http://www.computer.org/portal/web/tc/home
http://www.csupomona.edu/~hnriley/www/VonN.html
http://www.csupomona.edu/~hnriley/www/VonN.html

Chapter 2

Complex instruction set computing

Complex instruction set computing (CISC /ˈsɪsk/) is
a processor design where single instructions can execute
several low-level operations (such as a load from memory,
an arithmetic operation, and a memory store) or are capa-
ble of multi-step operations or addressing modes within
single instructions. The term was retroactively coined in
contrast to reduced instruction set computer (RISC)[1][2]

and has therefore become something of an umbrella term
for everything that is not RISC, i.e. everything from large
and complex mainframes to simplistic microcontrollers
where memory load and store operations are not sepa-
rated from arithmetic instructions.
A modern RISC processor can therefore be much more
complex than, say, a modern microcontroller using a
CISC-labeled instruction set, especially in terms of im-
plementation (electronic circuit complexity), but also in
terms of the number of instructions or the complex-
ity of their encoding patterns. The only differentiating
characteristic (nearly) “guaranteed” is the fact that most
RISC designs use uniform instruction length for (almost)
all instructions and employ strictly separate load/store-
instructions.
Examples of instruction set architectures that have
been retroactively labeled CISC are System/360 through
z/Architecture, the PDP-11 and VAX architectures, Data
General Nova and many others. Well known micro-
processors and microcontrollers that have also been la-
beled CISC in many academic publications include the
Motorola 6800, 6809 and 68000-families; the Intel
8080, iAPX432 and x86-family; the Zilog Z80, Z8 and
Z8000-families; the National Semiconductor 32016 and
NS320xx-line; the MOS Technology 6502-family; the
Intel 8051-family; and others.
Some designs have been regarded as borderline cases by
some writers. For instance, the Microchip Technology
PIC has been labeled RISC in some circles and CISC in
others and the 6502 and 6809 have both been described
as “RISC-like”, although they have complex addressing
modes as well as arithmetic instructions that access mem-
ory, contrary to the RISC-principles.

2.1 Historical design context

2.1.1 Incitements and benefits

Before the RISC philosophy became prominent, many
computer architects tried to bridge the so-called semantic
gap, i.e. to design instruction sets that directly sup-
ported high-level programming constructs such as proce-
dure calls, loop control, and complex addressing modes,
allowing data structure and array accesses to be com-
bined into single instructions. Instructions are also typi-
cally highly encoded in order to further enhance the code
density. The compact nature of such instruction sets
results in smaller program sizes and fewer (slow) main
memory accesses, which at the time (early 1960s and on-
wards) resulted in a tremendous savings on the cost of
computer memory and disc storage, as well as faster ex-
ecution. It also meant good programming productivity
even in assembly language, as high level languages such
as Fortran or Algol were not always available or appropri-
ate (microprocessors in this category are sometimes still
programmed in assembly language for certain types of
critical applications).

New instructions

In the 1970s, analysis of high level languages indicated
some complex machine language implementations and it
was determined that new instructions could improve per-
formance. Some instructions were added that were never
intended to be used in assembly language but fit well with
compiled high-level languages. Compilers were updated
to take advantage of these instructions. The benefits of
semantically rich instructions with compact encodings
can be seen in modern processors as well, particularly in
the high-performance segment where caches are a cen-
tral component (as opposed to most embedded systems).
This is because these fast, but complex and expensive,
memories are inherently limited in size, making compact
code beneficial. Of course, the fundamental reason they
are needed is that main memories (i.e. dynamic RAM to-
day) remain slow compared to a (high performance) CPU
core.

6

https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Processor_design
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Operator_(programming)
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Umbrella_term
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/Z/Architecture
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Data_General_Nova
https://en.wikipedia.org/wiki/Data_General_Nova
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/6809
https://en.wikipedia.org/wiki/68000
https://en.wikipedia.org/wiki/8080
https://en.wikipedia.org/wiki/IAPX432
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/Zilog_Z8
https://en.wikipedia.org/wiki/Z8000
https://en.wikipedia.org/wiki/32016
https://en.wikipedia.org/wiki/NS320xx
https://en.wikipedia.org/wiki/6502
https://en.wikipedia.org/wiki/8051
https://en.wikipedia.org/wiki/PIC_microcontroller
https://en.wikipedia.org/wiki/6502
https://en.wikipedia.org/wiki/6809
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Computer_Architecture
https://en.wikipedia.org/wiki/Semantic_gap
https://en.wikipedia.org/wiki/Semantic_gap
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Programming_productivity
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/High_level_language
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Dynamic_RAM

2.1. HISTORICAL DESIGN CONTEXT 7

2.1.2 Design issues

While many designs achieved the aim of higher through-
put at lower cost and also allowed high-level language
constructs to be expressed by fewer instructions, it was
observed that this was not always the case. For instance,
low-end versions of complex architectures (i.e. using less
hardware) could lead to situations where it was possible to
improve performance by not using a complex instruction
(such as a procedure call or enter instruction), but instead
using a sequence of simpler instructions.
One reason for this was that architects (microcode writ-
ers) sometimes “over-designed” assembly language in-
structions, i.e. including features which were not possible
to implement efficiently on the basic hardware available.
This could, for instance, be “side effects” (above conven-
tional flags), such as the setting of a register or memory
location that was perhaps seldom used; if this was done
via ordinary (non duplicated) internal buses, or even the
external bus, it would demand extra cycles every time,
and thus be quite inefficient.
Even in balanced high-performance designs, highly en-
coded and (relatively) high-level instructions could be
complicated to decode and execute efficiently within a
limited transistor budget. Such architectures therefore
required a great deal of work on the part of the pro-
cessor designer in cases where a simpler, but (typically)
slower, solution based on decode tables and/or microcode
sequencing is not appropriate. At a time when transis-
tors and other components were a limited resource, this
also left fewer components and less opportunity for other
types of performance optimizations.

The RISC idea

The circuitry that performs the actions defined by the mi-
crocode in many (but not all) CISC processors is, in itself,
a processor which in many ways is reminiscent in struc-
ture to very early CPU designs. In the early 1970s, this
gave rise to ideas to return to simpler processor designs in
order to make it more feasible to cope without (then rela-
tively large and expensive) ROM tables and/or PLA struc-
tures for sequencing and/or decoding. The first (retroac-
tively) RISC-labeled processor (IBM 801 – IBM's Wat-
son Research Center, mid-1970s) was a tightly pipelined
simple machine originally intended to be used as an in-
ternal microcode kernel, or engine, in CISC designs, but
also became the processor that introduced the RISC idea
to a somewhat larger public. Simplicity and regularity
also in the visible instruction set would make it easier
to implement overlapping processor stages (pipelining)
at the machine code level (i.e. the level seen by compil-
ers). However, pipelining at that level was already used
in some high performance CISC “supercomputers” in or-
der to reduce the instruction cycle time (despite the com-
plications of implementing within the limited component
count and wiring complexity feasible at the time). Inter-

nal microcode execution in CISC processors, on the other
hand, could be more or less pipelined depending on the
particular design, and therefore more or less akin to the
basic structure of RISC processors.

Superscalar

In a more modern context, the complex variable-length
encoding used by some of the typical CISC architec-
tures makes it complicated, but still feasible, to build
a superscalar implementation of a CISC programming
model directly; the in-order superscalar original Pentium
and the out-of-order superscalar Cyrix 6x86 are well
known examples of this. The frequent memory accesses
for operands of a typical CISC machine may limit the in-
struction level parallelism that can be extracted from the
code, although this is strongly mediated by the fast cache
structures used in modern designs, as well as by other
measures. Due to inherently compact and semantically
rich instructions, the average amount of work performed
per machine code unit (i.e. per byte or bit) is higher for a
CISC than a RISC processor, which may give it a signifi-
cant advantage in a modern cache based implementation.
Transistors for logic, PLAs, and microcode are no longer
scarce resources; only large high-speed cache memories
are limited by the maximum number of transistors to-
day. Although complex, the transistor count of CISC
decoders do not grow exponentially like the total num-
ber of transistors per processor (the majority typically
used for caches). Together with better tools and en-
hanced technologies, this has led to new implementa-
tions of highly encoded and variable length designs with-
out load-store limitations (i.e. non-RISC). This gov-
erns re-implementations of older architectures such as
the ubiquitous x86 (see below) as well as new designs for
microcontrollers for embedded systems, and similar uses.
The superscalar complexity in the case of modern x86
was solved by converting instructions into one or more
micro-operations and dynamically issuing those micro-
operations, i.e. indirect and dynamic superscalar execu-
tion; the Pentium Pro and AMD K5 are early examples
of this. It allows a fairly simple superscalar design to be
located after the (fairly complex) decoders (and buffers),
giving, so to speak, the best of both worlds in many re-
spects.

CISC and RISC terms

The terms CISC and RISC have become less meaningful
with the continued evolution of both CISC and RISC de-
signs and implementations. The first highly (or tightly)
pipelined x86 implementations, the 486 designs from
Intel, AMD, Cyrix, and IBM, supported every instruc-
tion that their predecessors did, but achieved maximum
efficiency only on a fairly simple x86 subset that was
only a little more than a typical RISC instruction set (i.e.

https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Programmable_logic_array
https://en.wikipedia.org/wiki/IBM_801
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Intel_P5
https://en.wikipedia.org/wiki/Cyrix_6x86
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Micro-operations
https://en.wikipedia.org/wiki/Pentium_Pro
https://en.wikipedia.org/wiki/AMD_K5
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/Cyrix
https://en.wikipedia.org/wiki/IBM

8 CHAPTER 2. COMPLEX INSTRUCTION SET COMPUTING

without typical RISC load-store limitations). The In-
tel P5 Pentium generation was a superscalar version of
these principles. However, modern x86 processors also
(typically) decode and split instructions into dynamic se-
quences of internally buffered micro-operations, which
not only helps execute a larger subset of instructions in a
pipelined (overlapping) fashion, but also facilitates more
advanced extraction of parallelism out of the code stream,
for even higher performance.
Contrary to popular simplifications (present also in some
academic texts), not all CISCs are microcoded or have
“complex” instructions. As CISC became a catch-all
term meaning anything that’s not a load-store (RISC) ar-
chitecture, it’s not the number of instructions, nor the
complexity of the implementation or of the instructions
themselves, that define CISC, but the fact that arithmetic
instructions also perform memory accesses. Compared
to a small 8-bit CISC processor, a RISC floating-point
instruction is complex. CISC does not even need to have
complex addressing modes; 32 or 64-bit RISC proces-
sors may well have more complex addressing modes than
small 8-bit CISC processors.
A PDP-10, a PDP-8, an Intel 386, an Intel 4004, a
Motorola 68000, a System z mainframe, a Burroughs
B5000, a VAX, a Zilog Z80000, and a MOS Technol-
ogy 6502 all vary wildly in the number, sizes, and formats
of instructions, the number, types, and sizes of registers,
and the available data types. Some have hardware sup-
port for operations like scanning for a substring, arbitrary-
precision BCD arithmetic, or transcendental functions,
while others have only 8-bit addition and subtraction. But
they are all in the CISC category because they have “load-
operate” instructions that load and/or store memory con-
tents within the same instructions that perform the ac-
tual calculations. For instance, the PDP-8, having only
8 fixed-length instructions and no microcode at all, is a
CISC because of how the instructions work, PowerPC,
which has over 230 instructions (more than some VAXes)
and complex internals like register renaming and a re-
order buffer is a RISC, while Minimal CISC has 8 instruc-
tions, but is clearly a CISC because it combines memory
access and computation in the same instructions.
Some of the problems and contradictions in this termi-
nology will perhaps disappear as more systematic terms,
such as (non) load/store, become more popular and even-
tually replace the imprecise and slightly counter-intuitive
RISC/CISC terms.

2.2 See also
• CPU design

• Computer architecture

• Computer

• CPU

• MISC

• RISC

• ZISC

• VLIW

• Microprocessor

2.3 Notes
• Tanenbaum, Andrew S. (2006) Structured Computer
Organization, Fifth Edition, Pearson Education, Inc.
Upper Saddle River, NJ.

2.4 References
[1] Patterson, D. A.; Ditzel, D. R. (October 1980). “The

case for the reduced instruction set computer”. SIGARCH
Computer Architecture News (ACM) 8 (6): 25–33.
doi:10.1145/641914.641917.

[2] Lakhe, Pravin R. (June 2013). “A Technology in Most
Recent Processor is Complex Reduced Instruction Set
Computers (CRISC): A Survey” (PDF). International
Journal of Innovation Research and Studies. pp. 711–715.

This article is based on material taken from the Free On-
line Dictionary of Computing prior to 1 November 2008
and incorporated under the “relicensing” terms of the
GFDL, version 1.3 or later.

2.5 Further reading
• Mano, M. Morris. Computer System Architecture
(3rd Edition). ISBN 978-0131755635.

2.6 External links
• COSC 243_Computer Architecture 2

https://en.wikipedia.org/wiki/Load-store_architecture
https://en.wikipedia.org/wiki/P5_(microarchitecture)
https://en.wikipedia.org/wiki/Pentium_(brand)
https://en.wikipedia.org/wiki/Micro-operations
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/PDP-8
https://en.wikipedia.org/wiki/Intel_386
https://en.wikipedia.org/wiki/Intel_4004
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/System_z
https://en.wikipedia.org/wiki/Burroughs_B5000
https://en.wikipedia.org/wiki/Burroughs_B5000
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Zilog_Z80000
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Transcendental_function
http://www.cs.uiowa.edu/~jones/arch/cisc/
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Zero_instruction_set_computer
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/David_A._Patterson_(scientist)
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F641914.641917
http://www.ijirs.com/vol2_issue-6/59.pdf
http://www.ijirs.com/vol2_issue-6/59.pdf
http://www.ijirs.com/vol2_issue-6/59.pdf
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0131755635
http://www.cs.otago.ac.nz/cosc243/lectures/243-2013print13.pdf

Chapter 3

Reduced instruction set computing

“RISC” redirects here. For other uses, see RISC (disam-
biguation).
Reduced instruction set computing, or RISC (pro-

A Sun UltraSPARC, a RISC microprocessor

nounced 'risk'), is a CPU design strategy based on the
insight that a simplified instruction set (as opposed to a
complex set) provides higher performance when com-
bined with a microprocessor architecture capable of exe-
cuting those instructions using fewer microprocessor cy-
cles per instruction.[1] A computer based on this strat-
egy is a reduced instruction set computer, also called RISC.
The opposing architecture is called complex instruction
set computing, i.e. CISC.
Various suggestions have been made regarding a precise
definition of RISC, but the general concept is that of a
system that uses a small, highly optimized set of instruc-
tions, rather than a more versatile set of instructions of-
ten found in other types of architectures. Another com-
mon trait is that RISC systems use the load/store architec-
ture,[2] where memory is normally accessed only through
specific instructions, rather than accessed as part of other
instructions like add.
Although a number of systems from the 1960s and 70s
have been identified as being forerunners of RISC, the

modern version of the design dates to the 1980s. In par-
ticular, two projects at Stanford University and University
of California, Berkeley are most associated with the pop-
ularization of this concept. Stanford’s design would go
on to be commercialized as the successful MIPS archi-
tecture, while Berkeley’s RISC gave its name to the entire
concept, commercialized as the SPARC. Another success
from this era were IBM's efforts that eventually led to the
Power Architecture. As these projects matured, a wide
variety of similar designs flourished in the late 1980s and
especially the early 1990s, representing a major force in
the Unix workstation market as well as embedded proces-
sors in laser printers, routers and similar products.
Well-known RISC families include DEC Alpha, AMD
Am29000, ARC, ARM, Atmel AVR, Blackfin, Intel i860
and i960, MIPS, Motorola 88000, PA-RISC, Power (in-
cluding PowerPC), RISC-V, SuperH, and SPARC. In
the 21st century, the use of ARM architecture proces-
sors in smart phones and tablet computers such as the
iPad and Android devices provided a wide user base for
RISC-based systems. RISC processors are also used in
supercomputers such as the K computer, the fastest on the
TOP500 list in 2011, second at the 2012 list, and fourth
at the 2013 list,[3][4] and Sequoia, the fastest in 2012 and
third in the 2013 list.

3.1 History and development

A number of systems, going back to the 1970s (and even
1960s) have been credited as the first RISC architecture,
partly based on their use of load/store approach.[5] The
term RISC was coined by David Patterson of the Berkeley
RISC project, although somewhat similar concepts had
appeared before.[6]

The CDC 6600 designed by Seymour Cray in 1964 used
a load/store architecture with only two addressing modes
(register+register, and register+immediate constant) and
74 opcodes, with the basic clock cycle/instruction issue
rate being 10 times faster than the memory access time.[7]

Partly due to the optimized load/store architecture of the
CDC 6600 Jack Dongarra states that it can be considered
as a forerunner of modern RISC systems, although a num-

9

https://en.wikipedia.org/wiki/RISC_(disambiguation)
https://en.wikipedia.org/wiki/RISC_(disambiguation)
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/UltraSPARC
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Cycles_per_instruction
https://en.wikipedia.org/wiki/Cycles_per_instruction
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Berkeley_RISC
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/Unix_workstation
https://en.wikipedia.org/wiki/Embedded_processor
https://en.wikipedia.org/wiki/Embedded_processor
https://en.wikipedia.org/wiki/Laser_printer
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/AMD_Am29000
https://en.wikipedia.org/wiki/AMD_Am29000
https://en.wikipedia.org/wiki/ARC_(processor)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/Blackfin
https://en.wikipedia.org/wiki/Intel_i860
https://en.wikipedia.org/wiki/Intel_i960
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Motorola_88000
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Smart_phone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/IPad
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/K_computer
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/IBM_Sequoia
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/David_Patterson_(scientist)
https://en.wikipedia.org/wiki/Berkeley_RISC
https://en.wikipedia.org/wiki/Berkeley_RISC
https://en.wikipedia.org/wiki/CDC_6600
https://en.wikipedia.org/wiki/Seymour_Cray
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/Jack_Dongarra

10 CHAPTER 3. REDUCED INSTRUCTION SET COMPUTING

ber of other technical barriers needed to be overcome for
the development of a modern RISC system.[8]

An IBM PowerPC 601 RISC microprocessor.

Michael J. Flynn views the first RISC system as the IBM
801 design which began in 1975 by John Cocke, and com-
pleted in 1980.[2] The 801 was eventually produced in
a single-chip form as the ROMP in 1981, which stood
for 'Research OPD [Office Products Division] Micro
Processor'.[9] As the name implies, this CPU was de-
signed for “mini” tasks, and was also used in the IBM
RT-PC in 1986, which turned out to be a commercial
failure.[10] But the 801 inspired several research projects,
including new ones at IBM that would eventually lead to
the IBM POWER instruction set architecture.[11][12]

The most public RISC designs, however, were the results
of university research programs run with funding from
the DARPA VLSI Program. The VLSI Program, practi-
cally unknown today, led to a huge number of advances
in chip design, fabrication, and even computer graphics.
The Berkeley RISC project started in 1980 under the di-
rection of David Patterson and Carlo H. Sequin.[6] [13][14]

Berkeley RISC was based on gaining performance
through the use of pipelining and an aggressive use of a
technique known as register windowing.[13][14] In a tradi-
tional CPU, one has a small number of registers, and a
program can use any register at any time. In a CPU with
register windows, there are a huge number of registers,
e.g. 128, but programs can only use a small number of
them, e.g. eight, at any one time. A program that lim-
its itself to eight registers per procedure can make very
fast procedure calls: The call simply moves the window
“down” by eight, to the set of eight registers used by that
procedure, and the return moves the window back.[15]

The Berkeley RISC project delivered the RISC-I proces-
sor in 1982. Consisting of only 44,420 transistors (com-
pared with averages of about 100,000 in newer CISC de-
signs of the era) RISC-I had only 32 instructions, and

yet completely outperformed any other single-chip de-
sign. They followed this up with the 40,760 transistor, 39
instruction RISC-II in 1983, which ran over three times
as fast as RISC-I.[14]

The MIPS architecture grew out of a graduate course by
John L. Hennessy at Stanford University in 1981, resulted
in a functioning system in 1983, and could run simple
programs by 1984.[16] The MIPS approach emphasized
an aggressive clock cycle and the use of the pipeline,
making sure it could be run as “full” as possible.[16] The
MIPS system was followed by the MIPS-X and in 1984
Hennessy and his colleagues formed MIPS Computer
Systems.[16][17] The commercial venture resulted in the
R2000 microprocessor in 1985, and was followed by the
R3000 in 1988.[17]

Co-designer Yunsup Lee holding RISC-V prototype chip in 2013.

In the early 1980s, significant uncertainties surrounded
the RISC concept, and it was uncertain if it could have
a commercial future, but by the mid-1980s the con-
cepts had matured enough to be seen as commercially
viable.[10][16] In 1986 Hewlett Packard started using an
early implementation of their PA-RISC in some of their
computers.[10] In the meantime, the Berkeley RISC effort
had become so well known that it eventually became the
name for the entire concept and in 1987 Sun Microsys-
tems began shipping systems with the SPARC processor,
directly based on the Berkeley RISC-II system.[10][19]

The US government Committee on Innovations in Com-
puting and Communications credits the acceptance of
the viability of the RISC concept to the success of the
SPARC system.[10] The success of SPARC renewed in-
terest within IBM, which released new RISC systems by
1990 and by 1995 RISC processors were the foundation
of a $15 billion server industry.[10]

Since 2010 a new open source ISA, RISC-V, is under
development at the University of California, Berkeley,
for research purposes and as a free alternative to propri-
etary ISAs. As of 2014 version 2 of the userspace ISA
is fixed.[20] The ISA is designed to be extensible from a
barebones core sufficient for a small embedded processor
to supercomputer and cloud computing use with standard
and chip designer defined extensions and coprocessors. It
has been tested in silicon design with the ROCKET SoC

https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Michael_J._Flynn
https://en.wikipedia.org/wiki/IBM_801
https://en.wikipedia.org/wiki/IBM_801
https://en.wikipedia.org/wiki/John_Cocke
https://en.wikipedia.org/wiki/ROMP
https://en.wikipedia.org/wiki/IBM_RT-PC
https://en.wikipedia.org/wiki/IBM_RT-PC
https://en.wikipedia.org/wiki/IBM_POWER_Instruction_Set_Architecture
https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/VLSI_Project
https://en.wikipedia.org/wiki/Berkeley_RISC
https://en.wikipedia.org/wiki/David_A._Patterson_(scientist)
https://en.wikipedia.org/wiki/Carlo_H._Sequin
https://en.wikipedia.org/wiki/Pipelining
https://en.wikipedia.org/wiki/Register_window
https://en.wikipedia.org/wiki/Procedure_call
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/John_L._Hennessy
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/MIPS_Computer_Systems
https://en.wikipedia.org/wiki/MIPS_Computer_Systems
https://en.wikipedia.org/wiki/R2000_(microprocessor)
https://en.wikipedia.org/wiki/R3000
https://en.wikipedia.org/wiki/Hewlett_Packard
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Berkeley_RISC
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/RISC-V

3.2. CHARACTERISTICS AND DESIGN PHILOSOPHY 11

which is also available as an open source processor gen-
erator in the CHISEL language.

3.2 Characteristics and design phi-
losophy

For more details on this topic, see CPU design.

3.2.1 Instruction set philosophy

A common misunderstanding of the phrase “reduced in-
struction set computer” is the mistaken idea that instruc-
tions are simply eliminated, resulting in a smaller set of
instructions.[21] In fact, over the years, RISC instruction
sets have grown in size, and today many of them have
a larger set of instructions than many CISC CPUs.[22][23]

Some RISC processors such as the PowerPC have instruc-
tion sets as large as the CISC IBM System/370, for exam-
ple; conversely, the DEC PDP-8—clearly a CISC CPU
because many of its instructions involve multiple mem-
ory accesses—has only 8 basic instructions and a few ex-
tended instructions.
The term “reduced” in that phrase was intended to de-
scribe the fact that the amount of work any single in-
struction accomplishes is reduced—at most a single data
memory cycle—compared to the “complex instructions”
of CISC CPUs that may require dozens of data memory
cycles in order to execute a single instruction.[24] In par-
ticular, RISC processors typically have separate instruc-
tions for I/O and data processing.
The term load/store architecture is sometimes preferred.

3.2.2 Instruction format

Most RISC machines used a fixed length instruction(e.g.
32 bits) and layout, with more predictable encodings,
which simplifies fetch and interdependency logic consid-
erably; Several, such as ARM, Power ISA, MIPS, RISC-
V, and the Adapteva Epiphany, have an optional com-
pressed instruction option to work around the problem
of reduced code density. The SH5 also follows this pat-
tern, albeit having evolved in the opposite direction, hav-
ing added longer media instructions to an original 16bit
encoding.

3.2.3 Hardware utilization

For any given level of general performance, a RISC chip
will typically have far fewer transistors dedicated to the
core logic which originally allowed designers to increase
the size of the register set and increase internal paral-
lelism.

Other features that are typically found in RISC architec-
tures are:

• Uniform instruction format, using a single word with
the opcode in the same bit positions in every instruc-
tion, demanding less decoding;

• Identical general purpose registers, allowing any
register to be used in any context, simplifying com-
piler design (although normally there are separate
floating point registers);

• Simple addressing modes, with complex addressing
performed via sequences of arithmetic, load-store
operations, or both;

• Few data types in hardware, some CISCs have byte
string instructions, or support complex numbers; this
is so far unlikely to be found on a RISC.

• Processor throughput of one instruction per cycle on
average

Exceptions abound, of course, within both CISC and
RISC.
RISC designs are also more likely to feature a Harvard
memory model, where the instruction stream and the data
stream are conceptually separated; this means that modi-
fying the memory where code is held might not have any
effect on the instructions executed by the processor (be-
cause the CPU has a separate instruction and data cache),
at least until a special synchronization instruction is is-
sued. On the upside, this allows both caches to be ac-
cessed simultaneously, which can often improve perfor-
mance.
Many early RISC designs also shared the characteristic
of having a branch delay slot. A branch delay slot is
an instruction space immediately following a jump or
branch. The instruction in this space is executed, whether
or not the branch is taken (in other words the effect of the
branch is delayed). This instruction keeps the ALU of the
CPU busy for the extra time normally needed to perform
a branch. Nowadays the branch delay slot is considered an
unfortunate side effect of a particular strategy for imple-
menting some RISC designs, and modern RISC designs
generally do away with it (such as PowerPC and more re-
cent versions of SPARC and MIPS).
Some aspects attributed to the first RISC-labeled designs
around 1975 include the observations that the memory-
restricted compilers of the time were often unable to
take advantage of features intended to facilitate man-
ual assembly coding, and that complex addressing modes
take many cycles to perform due to the required addi-
tional memory accesses. It was argued that such func-
tions would be better performed by sequences of sim-
pler instructions if this could yield implementations small
enough to leave room for many registers, reducing the

https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/System/370
https://en.wikipedia.org/wiki/PDP-8
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/MIPS_instruction_set
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/Adapteva
https://en.wikipedia.org/wiki/SuperH#SH5
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/General_purpose_register
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Instruction_per_cycle
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Branch_delay_slot
https://en.wikipedia.org/wiki/Arithmetic_and_logical_unit
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Addressing_mode

12 CHAPTER 3. REDUCED INSTRUCTION SET COMPUTING

number of slow memory accesses. In these simple de-
signs, most instructions are of uniform length and simi-
lar structure, arithmetic operations are restricted to CPU
registers and only separate load and store instructions ac-
cess memory. These properties enable a better balanc-
ing of pipeline stages than before, making RISC pipelines
significantly more efficient and allowing higher clock fre-
quencies.
In the early days of the computer industry, programming
was done in assembly language or machine code, which
encouraged powerful and easy-to-use instructions. CPU
designers therefore tried to make instructions that would
do as much work as feasible. With the advent of higher
level languages, computer architects also started to create
dedicated instructions to directly implement certain cen-
tral mechanisms of such languages. Another general goal
was to provide every possible addressing mode for ev-
ery instruction, known as orthogonality, to ease compiler
implementation. Arithmetic operations could therefore
often have results as well as operands directly in memory
(in addition to register or immediate).
The attitude at the time was that hardware design was
more mature than compiler design so this was in itself also
a reason to implement parts of the functionality in hard-
ware or microcode rather than in a memory constrained
compiler (or its generated code) alone. After the advent
of RISC, this philosophy became retroactively known as
complex instruction set computing, or CISC.
CPUs also had relatively few registers, for several reasons:

• More registers also implies more time-consuming
saving and restoring of register contents on the ma-
chine stack.

• A large number of registers requires a large number
of instruction bits as register specifiers, meaning less
dense code (see below).

• CPU registers are more expensive than external
memory locations; large register sets were cumber-
some with limited circuit boards or chip integration.

An important force encouraging complexity was very
limited main memories (on the order of kilobytes). It was
therefore advantageous for the code density—the density
of information held in computer programs—to be high,
leading to features such as highly encoded, variable length
instructions, doing data loading as well as calculation (as
mentioned above). These issues were of higher priority
than the ease of decoding such instructions.
An equally important reason was that main memories
were quite slow (a common type was ferrite core mem-
ory); by using dense information packing, one could re-
duce the frequency with which the CPU had to access this
slow resource. Modern computers face similar limiting
factors: main memories are slow compared to the CPU
and the fast cache memories employed to overcome this

are limited in size. This may partly explain why highly
encoded instruction sets have proven to be as useful as
RISC designs in modern computers.
RISC was developed as an alternative to what is now
known as CISC. Over the years, other strategies have
been implemented as alternatives to RISC and CISC.
Some examples are VLIW, MISC, OISC, massive paral-
lel processing, systolic array, reconfigurable computing,
and dataflow architecture.
In the mid-1970s, researchers (particularly John Cocke)
at IBM (and similar projects elsewhere) demonstrated
that the majority of combinations of these orthogonal
addressing modes and instructions were not used by most
programs generated by compilers available at the time.
It proved difficult in many cases to write a compiler with
more than limited ability to take advantage of the features
provided by conventional CPUs.
It was also discovered that, on microcoded implementa-
tions of certain architectures, complex operations tended
to be slower than a sequence of simpler operations doing
the same thing. This was in part an effect of the fact that
many designs were rushed, with little time to optimize or
tune every instruction; only those used most often were
optimized, and a sequence of those instructions could be
faster than a less-tuned instruction performing an equiv-
alent operation as that sequence. One infamous example
was the VAX's INDEX instruction.[13]

As mentioned elsewhere, core memory had long since
been slower than many CPU designs. The advent of semi-
conductor memory reduced this difference, but it was still
apparent that more registers (and later caches) would al-
low higher CPU operating frequencies. Additional regis-
ters would require sizeable chip or board areas which, at
the time (1975), could be made available if the complex-
ity of the CPU logic was reduced.
Yet another impetus of both RISC and other designs
came from practical measurements on real-world pro-
grams. Andrew Tanenbaum summed up many of these,
demonstrating that processors often had oversized imme-
diates. For instance, he showed that 98% of all the con-
stants in a program would fit in 13 bits, yet many CPU
designs dedicated 16 or 32 bits to store them. This sug-
gests that, to reduce the number of memory accesses, a
fixed length machine could store constants in unused bits
of the instruction word itself, so that they would be im-
mediately ready when the CPU needs them (much like
immediate addressing in a conventional design). This re-
quired small opcodes in order to leave room for a reason-
ably sized constant in a 32-bit instruction word.
Since many real-world programs spend most of their time
executing simple operations, some researchers decided
to focus on making those operations as fast as possible.
The clock rate of a CPU is limited by the time it takes to
execute the slowest sub-operation of any instruction; de-
creasing that cycle-time often accelerates the execution
of other instructions.[25] The focus on “reduced instruc-

https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Clock_frequency
https://en.wikipedia.org/wiki/Clock_frequency
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/High_level_language
https://en.wikipedia.org/wiki/High_level_language
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Orthogonal_(computing)
https://en.wikipedia.org/wiki/Compiler_design
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Code_density
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/VLIW
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/One_instruction_set_computer
https://en.wikipedia.org/wiki/Massively_parallel_(computing)
https://en.wikipedia.org/wiki/Massively_parallel_(computing)
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Dataflow_architecture
https://en.wikipedia.org/wiki/John_Cocke
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Clock_rate

3.4. USE OF RISC ARCHITECTURES 13

tions” led to the resulting machine being called a “reduced
instruction set computer” (RISC). The goal was to make
instructions so simple that they could easily be pipelined,
in order to achieve a single clock throughput at high fre-
quencies.
Later, it was noted that one of the most significant char-
acteristics of RISC processors was that external memory
was only accessible by a load or store instruction. All
other instructions were limited to internal registers. This
simplified many aspects of processor design: allowing in-
structions to be fixed-length, simplifying pipelines, and
isolating the logic for dealing with the delay in complet-
ing a memory access (cache miss, etc.) to only two in-
structions. This led to RISC designs being referred to as
load/store architectures.[26]

One more issue is that some complex instructions are
difficult to restart, e.g. following a page fault. In some
cases, restarting from the beginning will work (although
wasteful), but in many cases this would give incorrect re-
sults. Therefore, the machine needs to have some hidden
state to remember which parts went through and what re-
mains to be done. With a load/store machine, the pro-
gram counter is sufficient to describe the state of the ma-
chine.
The main distinguishing feature of RISC is that the in-
struction set is optimized for a highly regular instruction
pipeline flow.[21] All the other features associated with
RISC—branch delay slots, separate instruction and data
caches, load/store architecture, large register set, etc.—
may seem to be a random assortment of unrelated fea-
tures, but each of them is helpful in maintaining a regular
pipeline flow that completes an instruction every clock
cycle.

3.3 Comparison to other architec-
tures

Some CPUs have been specifically designed to have a
very small set of instructions – but these designs are very
different from classic RISC designs, so they have been
given other names such as minimal instruction set com-
puter (MISC), or transport triggered architecture (TTA),
etc.
Despite many successes, RISC has made few inroads into
the desktop PC and commodity server markets, where
Intel's x86 platform remains the dominant processor ar-
chitecture. There are three main reasons for this:

1. A very large base of proprietary PC applications are
written for x86 or compiled into x86 machine code,
whereas no RISC platform has a similar installed
base; hence PC users were locked into the x86.

2. Although RISC was indeed able to scale up in per-
formance quite quickly and cheaply, Intel took ad-

vantage of its large market by spending vast amounts
of money on processor development. Intel could
spend many times as much as any RISC manufac-
turer on improving low level design and manufac-
turing. The same could not be said about smaller
firms like Cyrix and NexGen, but they realized that
they could apply (tightly) pipelined design practices
also to the x86-architecture, just as in the 486 and
Pentium. The 6x86 and MII series did exactly this,
but was more advanced; it implemented superscalar
speculative execution via register renaming, directly
at the x86-semantic level. Others, like the Nx586
and AMD K5 did the same, but indirectly, via dy-
namic microcode buffering and semi-independent
superscalar scheduling and instruction dispatch at
the micro-operation level (older or simpler ‘CISC’
designs typically execute rigid micro-operation se-
quences directly). The first available chip deploying
such dynamic buffering and scheduling techniques
was the NexGen Nx586, released in 1994; the AMD
K5 was severely delayed and released in 1995.

3. Later, more powerful processors, such as Intel P6,
AMD K6, AMD K7, and Pentium 4, employed
similar dynamic buffering and scheduling princi-
ples and implemented loosely coupled superscalar
(and speculative) execution of micro-operation se-
quences generated from several parallel x86 decod-
ing stages. Today, these ideas have been further
refined (some x86-pairs are instead merged into a
more complex micro-operation, for example) and
are still used by modern x86 processors such as Intel
Core 2 and AMD K8.

Outside of the desktop arena, however, the ARM ar-
chitecture (RISC and born at about the same time as
SPARC) has to a degree broken the Intel stranglehold
with its widespread use in smartphones, tablets and many
forms of embedded device. It is also the case that since
the Pentium Pro (P6) Intel has been using an internal
RISC processor core for its processors.[27]

While early RISC designs differed significantly from con-
temporary CISC designs, by 2000 the highest perform-
ing CPUs in the RISC line were almost indistinguish-
able from the highest performing CPUs in the CISC
line.[28][29][30]

3.4 Use of RISC architectures

RISC architectures are now used across a wide range of
platforms, from cellular telephones and tablet computers
to some of the world’s fastest supercomputers such as the
K computer, the fastest on the TOP500 list in 2011.[3][4]

https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/Transport_triggered_architecture
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Vendor_lock-in
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Cyrix
https://en.wikipedia.org/wiki/NexGen
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/Register_renaming
https://en.wikipedia.org/wiki/Nx586
https://en.wikipedia.org/wiki/AMD_K5
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Micro-operation
https://en.wikipedia.org/wiki/P6_(microarchitecture)
https://en.wikipedia.org/wiki/AMD_K6
https://en.wikipedia.org/wiki/AMD_K7
https://en.wikipedia.org/wiki/Pentium_4
https://en.wikipedia.org/wiki/Micro-operation
https://en.wikipedia.org/wiki/Core_(microarchitecture)
https://en.wikipedia.org/wiki/Core_(microarchitecture)
https://en.wikipedia.org/wiki/AMD_K8
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/K_computer
https://en.wikipedia.org/wiki/TOP500

14 CHAPTER 3. REDUCED INSTRUCTION SET COMPUTING

3.4.1 Low end and mobile systems

By the beginning of the 21st century, the majority of low
end and mobile systems relied on RISC architectures.[31]

Examples include:

• The ARM architecture dominates the market for
low power and low cost embedded systems (typically
200–1800 MHz in 2014). It is used in a number
of systems such as most Android-based systems, the
Apple iPhone and iPad, Microsoft Windows Phone
(former Windows Mobile), RIM devices, Nintendo
Game Boy Advance and Nintendo DS, etc.

• The MIPS line, (at one point used in many SGI com-
puters) and now in the PlayStation, PlayStation 2,
Nintendo 64, PlayStation Portable game consoles,
and residential gateways like Linksys WRT54G se-
ries.

• Hitachi's SuperH, originally in wide use in the Sega
Super 32X, Saturn and Dreamcast, now developed
and sold by Renesas as the SH4

• Atmel AVR used in a variety of products ranging
from Xbox handheld controllers to BMW cars.

• RISC-V, the open source fifth Berkeley RISC ISA,
with 32 bit address space a small core integer in-
struction set, an experimental “Compressed” ISA
for code density and designed for standard and spe-
cial purpose extensions.

3.4.2 High end RISC and supercomputing

• MIPS, by Silicon Graphics (ceased making MIPS-
based systems in 2006).

• SPARC, by Oracle (previously Sun Microsystems),
and Fujitsu.

• IBM's Power Architecture, used in many of IBM’s
supercomputers, midrange servers and worksta-
tions.

• Hewlett-Packard's PA-RISC, also known as HP-PA
(discontinued at the end of 2008).

• Alpha, used in single-board computers, worksta-
tions, servers and supercomputers from Digital
Equipment Corporation, Compaq and HP (discon-
tinued as of 2007).

• RISC-V, the open source fifth Berkeley RISC ISA,
with 64 or 128-bit address spaces, and the inte-
ger core extended with floating point, atomics and
vector processing, and designed to be extended with
instructions for networking, IO, data processing etc.
A 64-bit superscalar design, “Rocket”, is available
for download.

3.5 See also

• Addressing mode

• Classic RISC pipeline

• Complex instruction set computer

• Computer architecture

• Instruction set

• Microprocessor

• Minimal instruction set computer

3.6 References

[1] Northern Illinois University, Department of Computer
Science, “RISC - Reduced instruction set computer”

[2] Flynn, Michael J. (1995). Computer architecture:
pipelined and parallel processor design. pp. 54–56. ISBN
0867202041.

[3] “Japanese ‘K’ Computer Is Ranked Most Powerful”. The
New York Times. 20 June 2011. Retrieved 20 June 2011.

[4] “Supercomputer “K computer” Takes First Place in
World”. Fujitsu. Retrieved 20 June 2011.

[5] Fisher, Joseph A.; Faraboschi, Paolo; Young, Cliff
(2005). Embedded Computing: A VLIW Approach to
Architecture, Compilers and Tools. p. 55. ISBN
1558607668.

[6] Milestones in computer science and information technology
by Edwin D. Reilly 2003 ISBN 1-57356-521-0 page 50

[7] Grishman, Ralph. Assembly Language Programming for
the Control Data 6000 Series. Algorithmics Press. 1974.
pg 12

[8] Numerical Linear Algebra on High-Performance Comput-
ers by Jack J. Dongarra, et al 1987 ISBN 0-89871-428-1
page 6

[9] Processor architecture: from dataflow to superscalar and
beyond by Jurij Šilc, Borut Robič, Theo Ungerer 1999
ISBN 3-540-64798-8 page 33

[10] Funding a Revolution: Government Support for Computing
Research by Committee on Innovations in Computing and
Communications 1999 ISBN 0-309-06278-0 page 239

[11] Processor design: system-on-chip computing for ASICs and
FPGAs by Jari Nurmi 2007 ISBN 1-4020-5529-3 pages
40-43

[12] Readings in computer architecture by Mark Donald Hill,
Norman Paul Jouppi, Gurindar Sohi 1999 ISBN 1-55860-
539-8 pages 252-254

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/IPhone
https://en.wikipedia.org/wiki/IPad
https://en.wikipedia.org/wiki/Windows_Phone
https://en.wikipedia.org/wiki/Windows_Mobile
https://en.wikipedia.org/wiki/Research_In_Motion
https://en.wikipedia.org/wiki/Game_Boy_Advance
https://en.wikipedia.org/wiki/Nintendo_DS
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Silicon_Graphics
https://en.wikipedia.org/wiki/PlayStation
https://en.wikipedia.org/wiki/PlayStation_2
https://en.wikipedia.org/wiki/Nintendo_64
https://en.wikipedia.org/wiki/PlayStation_Portable
https://en.wikipedia.org/wiki/Residential_gateway
https://en.wikipedia.org/wiki/Linksys_WRT54G_series
https://en.wikipedia.org/wiki/Linksys_WRT54G_series
https://en.wikipedia.org/wiki/Hitachi,_Ltd.
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/Sega
https://en.wikipedia.org/wiki/Sega_32X
https://en.wikipedia.org/wiki/Sega_Saturn
https://en.wikipedia.org/wiki/Dreamcast
https://en.wikipedia.org/wiki/Renesas
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/Xbox_(console)
https://en.wikipedia.org/wiki/BMW
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/MIPS_Technologies
https://en.wikipedia.org/wiki/Silicon_Graphics
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Fujitsu
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/Compaq
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Atomic_operations_(computing)
https://en.wikipedia.org/wiki/Vector_processor
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Classic_RISC_pipeline
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
http://faculty.cs.niu.edu/~berezin/463/lec/05/risc03.html
http://faculty.cs.niu.edu/~berezin/463/lec/05/risc03.html
https://en.wikipedia.org/wiki/Michael_J._Flynn
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0867202041
http://www.nytimes.com/2011/06/20/technology/20computer.html
http://www.fujitsu.com/global/news/pr/archives/month/2011/20110620-02.html
http://www.fujitsu.com/global/news/pr/archives/month/2011/20110620-02.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1558607668
https://en.wikipedia.org/wiki/Special:BookSources/1573565210
https://en.wikipedia.org/wiki/Special:BookSources/0898714281
https://en.wikipedia.org/wiki/Special:BookSources/3540647988
https://en.wikipedia.org/wiki/Special:BookSources/0309062780
https://en.wikipedia.org/wiki/Special:BookSources/1402055293
https://en.wikipedia.org/wiki/Special:BookSources/1558605398
https://en.wikipedia.org/wiki/Special:BookSources/1558605398

3.7. EXTERNAL LINKS 15

[13] Patterson, D. A.; Ditzel, D. R. (1980). “The case
for the reduced instruction set computer”. ACM
SIGARCH Computer Architecture News 8 (6): 25–
33. doi:10.1145/641914.641917. CiteSeerX:
10 .1 .1 .68 .9623.

[14] RISC I: A Reduced Instruction Set VLSI Computer by David
A. Patterson and Carlo H. Sequin, in the Proceedings
of the 8th annual symposium on Computer Architecture,
1981.

[15] Design and Implementation of RISC I by Carlo Sequin
and David Patterson, in the Proceedings of the Advanced
Course on VLSI Architecture, University of Bristol, July
1982

[16] The MIPS-X RISC microprocessor by Paul Chow 1989
ISBN 0-7923-9045-8 pages xix-xx

[17] Processor design: system-on-chip computing for ASICs and
FPGAs by Jari Nurmi 2007 ISBN 1-4020-5529-3 pages
52-53

[18] “Joseph H. Condon”. Princeton University History of Sci-
ence.

[19] Computer science handbook by Allen B. Tucker 2004
ISBN 1-58488-360-X page 100-6

[20] Waterman, Andrew; Lee, Yunsup; Patterson, David A.;
Asanovi, Krste. “The RISC-V Instruction Set Manual,
Volume I: Base User-Level ISA version 2 (Technical Re-
port EECS-2014-54)". University of California, Berke-
ley. Retrieved 26 Dec 2014.

[21] Margarita Esponda and Ra'ul Rojas. “The RISC Concept -
A Survey of Implementations”. Section 2: “The confusion
around the RISC concept”. 1991.

[22] “RISC vs. CISC: the Post-RISC Era” by Jon “Hannibal”
Stokes (Arstechnica)

[23] “RISC versus CISC” by Lloyd Borrett Australian Personal
Computer, June 1991

[24] “Guide to RISC Processors for Programmers and Engi-
neers": Chapter 3: “RISC Principles” by Sivarama P.
Dandamudi, 2005, ISBN 978-0-387-21017-9. “the main
goal was not to reduce the number of instructions, but the
complexity”

[25] “Microprocessors From the Programmer’s Perspective”
by Andrew Schulman 1990

[26] Kevin Dowd. High Performance Computing. O'Reilly &
Associates, Inc. 1993.

[27] “Intel x86 Processors – CISC or RISC? Or both??" by
Sundar Srinivasan

[28] “Schaum’s Outline of Computer Architecture” by
Nicholas P. Carter 2002 p. 96 ISBN 0-07-136207-X

[29] “CISC, RISC, and DSP Microprocessors” by Douglas L.
Jones 2000

[30] “A History of Apple’s Operating Systems” by Amit Singh.
“the line between RISC and CISC has been growing
fuzzier over the years.”

[31] Guide to RISC processors: for programmers and engineers
by Sivarama P. Dandamudi - 2005 ISBN 0-387-21017-2
pages 121-123

3.7 External links
• RISC vs. CISC

• What is RISC

• The RISC-V Instruction Set Architecture

• Not Quite RISC

https://en.wikipedia.org/wiki/David_Patterson_(scientist)
https://en.wikipedia.org/wiki/David_Ditzel
https://en.wikipedia.org/wiki/ACM_SIGARCH_Computer_Architecture_News
https://en.wikipedia.org/wiki/ACM_SIGARCH_Computer_Architecture_News
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F641914.641917
https://en.wikipedia.org/wiki/CiteSeer#CiteSeerX
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.9623
https://en.wikipedia.org/wiki/Special:BookSources/0792390458
https://en.wikipedia.org/wiki/Special:BookSources/1402055293
https://www.princeton.edu/~hos/mike/transcripts/condon.htm
https://en.wikipedia.org/wiki/Princeton_University
https://en.wikipedia.org/wiki/Special:BookSources/158488360X
http://riscv.org/download.html#tab_isaspec
http://riscv.org/download.html#tab_isaspec
http://riscv.org/download.html#tab_isaspec
http://www.inf.fu-berlin.de/lehre/WS94/RA/RISC-9.html
http://www.inf.fu-berlin.de/lehre/WS94/RA/RISC-9.html
http://arstechnica.com/cpu/4q99/risc-cisc/rvc-5.html#Branch
https://en.wikipedia.org/wiki/Arstechnica
http://www.borrett.id.au/computing/art-1991-06-02.htm
http://www.springerlink.com/content/u5t457g61q637v66/
http://www.springerlink.com/content/u5t457g61q637v66/
https://en.wikipedia.org/wiki/Special:BookSources/9780387210179
http://www.ddj.com/architect/184408418
http://sunnyeves.blogspot.co.uk/2009/07/intel-x86-processors-cisc-or-risc-or.html
http://books.google.com/books?id=24V00tD7HeAC&pg=PT105&lpg=PT105&dq=RISC+%2522fewer+instructions%2522&source=web&ots=RkQOcAKjNJ&sig=gTE5OsG93TjvDGpgN0Q87gfHc9Y&hl=en&sa=X&oi=book_result&resnum=1&ct=result#PPT105,M1
https://en.wikipedia.org/wiki/Special:BookSources/007136207X
http://www.ifp.uiuc.edu/~jones/RISCvCISCvDSP.pdf
http://www.kernelthread.com/publications/appleoshistory/5.html
https://en.wikipedia.org/wiki/Special:BookSources/0387210172
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2000-01/risc/risccisc/
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2000-01/risc/whatis/
http://riscv.org/
http://www.quadibloc.com/arch/sriscint.htm

Chapter 4

History of general-purpose CPUs

The history of general-purpose CPUs is a continuation
of the earlier history of computing hardware.

A Vacuum tube module from early 700 series IBM computers

4.1 1950s: early designs

Each of the computer designs of the early 1950s was
a unique design; there were no upward-compatible ma-
chines or computer architectures with multiple, differ-
ing implementations. Programs written for one machine
would not run on another kind, even other kinds from the
same company. This was not a major drawback at the
time because there was not a large body of software de-
veloped to run on computers, so starting programming
from scratch was not seen as a large barrier.
The design freedom of the time was very important, for
designers were very constrained by the cost of electronics,
yet just beginning to explore how a computer could best
be organized. Some of the basic features introduced dur-
ing this period included index registers (on the Ferranti
Mark 1), a return-address saving instruction (UNIVAC
I), immediate operands (IBM 704), and the detection of
invalid operations (IBM 650).
By the end of the 1950s commercial builders had de-

veloped factory-constructed, truck-deliverable comput-
ers. The most widely installed computer was the IBM
650, which used drum memory onto which programs
were loaded using either paper tape or punched cards.
Some very high-end machines also included core mem-
ory which provided higher speeds. Hard disks were also
starting to become popular.
A computer is an automatic abacus. The type of number
system affects the way it works. In the early 1950s most
computers were built for specific numerical processing
tasks, and many machines used decimal numbers as their
basic number system – that is, the mathematical functions
of the machines worked in base-10 instead of base-2 as
is common today. These were not merely binary coded
decimal. Most machines actually had ten vacuum tubes
per digit in each register. Some early Soviet computer de-
signers implemented systems based on ternary logic; that
is, a bit could have three states: +1, 0, or −1, correspond-
ing to positive, zero, or negative voltage.
An early project for the U.S. Air Force, BINAC at-
tempted to make a lightweight, simple computer by using
binary arithmetic. It deeply impressed the industry.
As late as 1970, major computer languages were unable
to standardize their numeric behavior because decimal
computers had groups of users too large to alienate.
Even when designers used a binary system, they still had
many odd ideas. Some used sign-magnitude arithmetic
(−1 = 10001), or ones’ complement (−1 = 11110), rather
than modern two’s complement arithmetic (−1 = 11111).
Most computers used six-bit character sets, because they
adequately encoded Hollerith cards. It was a major rev-
elation to designers of this period to realize that the data
word should be a multiple of the character size. They be-
gan to design computers with 12, 24 and 36 bit data words
(e.g. see the TX-2).
In this era, Grosch’s law dominated computer design:
Computer cost increased as the square of its speed.

16

https://en.wikipedia.org/wiki/History_of_computing_hardware
https://en.wikipedia.org/wiki/Index_registers
https://en.wikipedia.org/wiki/Ferranti_Mark_1
https://en.wikipedia.org/wiki/Ferranti_Mark_1
https://en.wikipedia.org/wiki/Return_address
https://en.wikipedia.org/wiki/UNIVAC_I
https://en.wikipedia.org/wiki/UNIVAC_I
https://en.wikipedia.org/wiki/IBM_704
https://en.wikipedia.org/wiki/IBM_650
https://en.wikipedia.org/wiki/IBM_650
https://en.wikipedia.org/wiki/IBM_650
https://en.wikipedia.org/wiki/Drum_memory
https://en.wikipedia.org/wiki/Punched_tape
https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Hard_disk
https://en.wikipedia.org/wiki/Abacus
https://en.wikipedia.org/wiki/Binary_coded_decimal
https://en.wikipedia.org/wiki/Binary_coded_decimal
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Soviet_Union
https://en.wikipedia.org/wiki/Ternary_logic
https://en.wikipedia.org/wiki/U.S._Air_Force
https://en.wikipedia.org/wiki/BINAC
https://en.wikipedia.org/wiki/Ones%2527_complement
https://en.wikipedia.org/wiki/Two%2527s_complement
https://en.wikipedia.org/wiki/Hollerith_cards
https://en.wikipedia.org/wiki/TX-2
https://en.wikipedia.org/wiki/Grosch%2527s_law

4.3. 1970S: LARGE SCALE INTEGRATION 17

4.2 1960s: the computer revolution
and CISC

One major problem with early computers was that a pro-
gram for one would not work on others. Computer com-
panies found that their customers had little reason to re-
main loyal to a particular brand, as the next computer they
purchased would be incompatible anyway. At that point,
price and performance were usually the only concerns.
In 1962, IBM tried a new approach to designing comput-
ers. The plan was to make an entire family of computers
that could all run the same software, but with different
performances, and at different prices. As users’ require-
ments grew they could move up to larger computers, and
still keep all of their investment in programs, data and
storage media.
In order to do this they designed a single reference com-
puter called the System/360 (or S/360). The System/360
was a virtual computer, a reference instruction set and
capabilities that all machines in the family would sup-
port. In order to provide different classes of machines,
each computer in the family would use more or less hard-
ware emulation, and more or less microprogram emula-
tion, to create a machine capable of running the entire
System/360 instruction set.
For instance a low-end machine could include a very sim-
ple processor for low cost. However this would require
the use of a larger microcode emulator to provide the rest
of the instruction set, which would slow it down. A high-
end machine would use a much more complex processor
that could directly process more of the System/360 de-
sign, thus running a much simpler and faster emulator.
IBM chose to make the reference instruction set quite
complex, and very capable. This was a conscious choice.
Even though the computer was complex, its "control
store" containing the microprogram would stay relatively
small, and could be made with very fast memory. An-
other important effect was that a single instruction could
describe quite a complex sequence of operations. Thus
the computers would generally have to fetch fewer in-
structions from the main memory, which could be made
slower, smaller and less expensive for a given combina-
tion of speed and price.
As the S/360 was to be a successor to both scientific ma-
chines like the 7090 and data processing machines like
the 1401, it needed a design that could reasonably support
all forms of processing. Hence the instruction set was de-
signed to manipulate not just simple binary numbers, but
text, scientific floating-point (similar to the numbers used
in a calculator), and the binary coded decimal arithmetic
needed by accounting systems.
Almost all following computers included these innova-
tions in some form. This basic set of features is now
called a "Complex Instruction Set Computer,” or CISC
(pronounced “sisk”), a term not invented until many years

later, when RISC (Reduced Instruction Set Computer)
began to get market share.
In many CISCs, an instruction could access either regis-
ters or memory, usually in several different ways. This
made the CISCs easier to program, because a program-
mer could remember just thirty to a hundred instructions,
and a set of three to ten addressing modes rather than
thousands of distinct instructions. This was called an
"orthogonal instruction set.” The PDP-11 and Motorola
68000 architecture are examples of nearly orthogonal in-
struction sets.
There was also the BUNCH (Burroughs, UNIVAC, NCR,
Control Data Corporation, and Honeywell) that competed
against IBM at this time; however, IBM dominated the
era with S/360.
The Burroughs Corporation (which later merged with
Sperry/Univac to become Unisys) offered an alternative
to S/360 with their B5000 series machines. In 1961, the
B5000 had virtual memory, symmetric multiprocessing,
a multi-programming operating system (Master Control
Program or MCP), written in ALGOL 60, and the indus-
try’s first recursive-descent compilers as early as 1963.

4.3 1970s: Large Scale Integration

In the 1960s, the Apollo guidance computer and
Minuteman missile made the integrated circuit economi-
cal and practical.

An Intel 8008 Microprocessor

Around 1970, the first calculator and clock chips began to
show that very small computers might be possible. One of
the first commercially available microprocessors was the
BCD based Intel 4004, designed in 1970 for the Japanese
calculator company Busicom. A little more than a year
later, in march of 1972, Intel introduced a microproces-
sor with a totally different and 8-bit based architecture,
the 8008, an integrated pMOS re-implementation of the
TTL-based based Datapoint 2200 CPU. Via the 8008,
8080 and the 8086 line of designs, the 2200 became a di-
rect ancestor to today’s ubiquitous x86 family (including
Pentium, Core i7 etc.); every instruction of the 2200 or

https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/Microprogram
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Control_store
https://en.wikipedia.org/wiki/Control_store
https://en.wikipedia.org/wiki/Microprogram
https://en.wikipedia.org/wiki/IBM_7090
https://en.wikipedia.org/wiki/IBM_1401
https://en.wikipedia.org/wiki/Binary_coded_decimal
https://en.wikipedia.org/wiki/Complex_Instruction_Set_Computer
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Orthogonal_instruction_set
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/BUNCH
https://en.wikipedia.org/wiki/Burroughs_Corporation
https://en.wikipedia.org/wiki/UNIVAC
https://en.wikipedia.org/wiki/NCR_Corporation
https://en.wikipedia.org/wiki/Control_Data_Corporation
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/Unisys
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Apollo_guidance_computer
https://en.wikipedia.org/wiki/Minuteman_missile
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Binary_coded_decimal
https://en.wikipedia.org/wiki/Intel_4004
https://en.wikipedia.org/wiki/Busicom
https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/8008
https://en.wikipedia.org/wiki/PMOS_logic
https://en.wikipedia.org/wiki/TTL_logic
https://en.wikipedia.org/wiki/Datapoint_2200
https://en.wikipedia.org/wiki/8080
https://en.wikipedia.org/wiki/8086
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Pentium
https://en.wikipedia.org/wiki/Intel_Core#Core_i7

18 CHAPTER 4. HISTORY OF GENERAL-PURPOSE CPUS

8008 has a direct equivalent in the large x86 instruction
set, although the opcode values are different in the latter.
By the mid-1970s, the use of integrated circuits in com-
puters was commonplace. The whole decade consists of
upheavals caused by the shrinking price of transistors.
It became possible to put an entire CPU on a single
printed circuit board. The result was that minicomput-
ers, usually with 16-bit words, and 4k to 64K of memory,
came to be commonplace.
CISCs were believed to be the most powerful types of
computers, because their microcode was small and could
be stored in very high-speed memory. The CISC archi-
tecture also addressed the “semantic gap” as it was per-
ceived at the time. This was a defined distance between
the machine language, and the higher level language peo-
ple used to program a machine. It was felt that compilers
could do a better job with a richer instruction set.
Custom CISCs were commonly constructed using “bit
slice” computer logic such as the AMD 2900 chips, with
custom microcode. A bit slice component is a piece of
an ALU, register file or microsequencer. Most bit-slice
integrated circuits were 4-bits wide.
By the early 1970s, the PDP-11 was developed, arguably
the most advanced small computer of its day. Almost
immediately, wider-word CISCs were introduced, the 32-
bit VAX and 36-bit PDP-10.
Intel soon developed a slightly more mini computer-like
microprocessor, the 8080, largely based on customer
feedback on the limited 8008. Much like the 8008, it was
used for applications such as terminals, printers, cash reg-
isters and industrial robots. However, the more capable
8080 also became the original target CPU for an early de
facto standard personal computer operating system called
CP/M and was used for such demanding control tasks as
cruise missiles, as well as many other kinds of applica-
tions. The 8080 became one of the first really widespread
microprocessors.
IBM continued to make large, fast computers. However
the definition of large and fast now meant more than a
megabyte of RAM, clock speeds near one megahertz ,
and tens of megabytes of disk drives.
IBM’s System 370 was a version of the 360 tweaked to
run virtual computing environments. The virtual com-
puter was developed in order to reduce the possibility of
an unrecoverable software failure.
The Burroughs B5000/B6000/B7000 series reached its
largest market share. It was a stack computer whose OS
was programmed in a dialect of Algol.
All these different developments competed for market
share.

4.4 Early 1980s: the lessons of
RISC

In the early 1980s, researchers at UC Berkeley and IBM
both discovered that most computer language compilers
and interpreters used only a small subset of the instruc-
tions of a CISC. Much of the power of the CPU was sim-
ply being ignored in real-world use. They realized that by
making the computer simpler and less orthogonal, they
could make it faster and less expensive at the same time.
At the same time, CPU calculation became faster in re-
lation to the time for necessary memory accesses. De-
signers also experimented with using large sets of internal
registers. The idea was to cache intermediate results in
the registers under the control of the compiler. This also
reduced the number of addressing modes and orthogonal-
ity.
The computer designs based on this theory were called
Reduced Instruction Set Computers, or RISC. RISCs
generally had larger numbers of registers, accessed by
simpler instructions, with a few instructions specifically
to load and store data to memory. The result was a very
simple core CPU running at very high speed, support-
ing the exact sorts of operations the compilers were using
anyway.
A common variation on the RISC design employs the
Harvard architecture, as opposed to the Von Neumann
or Stored Program architecture common to most other
designs. In a Harvard Architecture machine, the pro-
gram and data occupy separate memory devices and can
be accessed simultaneously. In Von Neumann machines
the data and programs are mixed in a single memory de-
vice, requiring sequential accessing which produces the
so-called “Von Neumann bottleneck.”
One downside to the RISC design has been that the pro-
grams that run on them tend to be larger. This is because
compilers have to generate longer sequences of the sim-
pler instructions to accomplish the same results. Since
these instructions need to be loaded from memory any-
way, the larger code size offsets some of the RISC de-
sign’s fast memory handling.
Recently, engineers have found ways to compress the re-
duced instruction sets so they fit in even smaller mem-
ory systems than CISCs. Examples of such compression
schemes include the ARM's “Thumb” instruction set. In
applications that do not need to run older binary software,
compressed RISCs are coming to dominate sales.
Another approach to RISCs was the MISC, "niladic" or
“zero-operand” instruction set. This approach realized
that the majority of space in an instruction was used to
identify the operands of the instruction. These machines
placed the operands on a push-down (last-in, first out)
stack. The instruction set was supplemented with a few
instructions to fetch and store memory. Most used simple
caching to provide extremely fast RISC machines, with

https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/Mini_computer
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/CP/M
https://en.wikipedia.org/wiki/Cruise_missile
https://en.wikipedia.org/wiki/VM_(Operating_system)
https://en.wikipedia.org/wiki/VM_(Operating_system)
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/UC_Berkeley
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Reduced_Instruction_Set_Computer
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/Niladic
https://en.wikipedia.org/wiki/Stack_(data_structure)

4.6. 1990 TO TODAY: LOOKING FORWARD 19

very compact code. Another benefit was that the interrupt
latencies were extremely small, smaller than most CISC
machines (a rare trait in RISC machines). The Burroughs
large systems architecture uses this approach. The B5000
was designed in 1961, long before the term “RISC” was
invented. The architecture puts six 8-bit instructions in
a 48-bit word, and was a precursor to VLIW design (see
below: 1990 to Today).
The Burroughs architecture was one of the inspirations
for Charles H. Moore's Forth programming language,
which in turn inspired his later MISC chip designs. For
example, his f20 cores had 31 5-bit instructions, which
fit four to a 20-bit word.
RISC chips now dominate the market for 32-bit em-
bedded systems. Smaller RISC chips are even becom-
ing common in the cost-sensitive 8-bit embedded-system
market. The main market for RISC CPUs has been sys-
tems that require low power or small size.
Even some CISC processors (based on architectures that
were created before RISC became dominant), such as
newer x86 processors, translate instructions internally
into a RISC-like instruction set.
These numbers may surprise many, because the “market”
is perceived to be desktop computers. x86 designs dom-
inate desktop and notebook computer sales, but desktop
and notebook computers are only a tiny fraction of the
computers now sold. Most people in industrialised coun-
tries own more computers in embedded systems in their
car and house than on their desks.

4.5 Mid-to-late 1980s: exploiting
instruction level parallelism

In the mid-to-late 1980s, designers began using a tech-
nique known as "instruction pipelining", in which the pro-
cessor works on multiple instructions in different stages
of completion. For example, the processor may be re-
trieving the operands for the next instruction while calcu-
lating the result of the current one. Modern CPUs may
use over a dozen such stages. MISC processors achieve
single-cycle execution of instructions without the need for
pipelining.
A similar idea, introduced only a few years later, was
to execute multiple instructions in parallel on separate
arithmetic logic units (ALUs). Instead of operating on
only one instruction at a time, the CPU will look for sev-
eral similar instructions that are not dependent on each
other, and execute them in parallel. This approach is
called superscalar processor design.
Such techniques are limited by the degree of instruction
level parallelism (ILP), the number of non-dependent in-
structions in the program code. Some programs are able
to run very well on superscalar processors due to their
inherent high ILP, notably graphics. However more gen-

eral problems do not have such high ILP, thus making the
achievable speedups due to these techniques to be lower.
Branching is one major culprit. For example, the pro-
gram might add two numbers and branch to a different
code segment if the number is bigger than a third num-
ber. In this case even if the branch operation is sent to the
second ALU for processing, it still must wait for the re-
sults from the addition. It thus runs no faster than if there
were only one ALU. The most common solution for this
type of problem is to use a type of branch prediction.
To further the efficiency of multiple functional units
which are available in superscalar designs, operand regis-
ter dependencies was found to be another limiting factor.
To minimize these dependencies, out-of-order execution
of instructions was introduced. In such a scheme, the
instruction results which complete out-of-order must be
re-ordered in program order by the processor for the pro-
gram to be restartable after an exception. Out-of-Order
execution was the main advancement of the computer in-
dustry during the 1990s. A similar concept is speculative
execution, where instructions from one direction of a
branch (the predicted direction) are executed before the
branch direction is known. When the branch direction is
known, the predicted direction and the actual direction
are compared. If the predicted direction was correct, the
speculatively executed instructions and their results are
kept; if it was incorrect, these instructions and their re-
sults are thrown out. Speculative execution coupled with
an accurate branch predictor gives a large performance
gain.
These advances, which were originally developed from
research for RISC-style designs, allow modern CISC pro-
cessors to execute twelve or more instructions per clock
cycle, when traditional CISC designs could take twelve or
more cycles to execute just one instruction.
The resulting instruction scheduling logic of these pro-
cessors is large, complex and difficult to verify. Further-
more, the higher complexity requires more transistors,
increasing power consumption and heat. In this respect
RISC is superior because the instructions are simpler,
have less interdependence and make superscalar imple-
mentations easier. However, as Intel has demonstrated,
the concepts can be applied to a CISC design, given
enough time and money.

Historical note: Some of these techniques (e.g.
pipelining) were originally developed in the
late 1950s by IBM on their Stretch mainframe
computer.

4.6 1990 to today: looking forward

https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/VLIW
https://en.wikipedia.org/wiki/Charles_H._Moore
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Instruction_level_parallelism
https://en.wikipedia.org/wiki/Instruction_level_parallelism
https://en.wikipedia.org/wiki/Branch_prediction
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/International_Business_Machines
https://en.wikipedia.org/wiki/IBM_7030

20 CHAPTER 4. HISTORY OF GENERAL-PURPOSE CPUS

4.6.1 VLIW and EPIC

The instruction scheduling logic that makes a superscalar
processor is just boolean logic. In the early 1990s, a sig-
nificant innovation was to realize that the coordination
of a multiple-ALU computer could be moved into the
compiler, the software that translates a programmer’s in-
structions into machine-level instructions.
This type of computer is called a very long instruction
word (VLIW) computer.
Statically scheduling the instructions in the compiler (as
opposed to letting the processor do the scheduling dy-
namically) can reduce CPU complexity. This can im-
prove performance, reduce heat, and reduce cost.
Unfortunately, the compiler lacks accurate knowledge of
runtime scheduling issues. Merely changing the CPU
core frequency multiplier will have an effect on schedul-
ing. Actual operation of the program, as determined by
input data, will have major effects on scheduling. To
overcome these severe problems a VLIW system may be
enhanced by adding the normal dynamic scheduling, los-
ing some of the VLIW advantages.
Static scheduling in the compiler also assumes that dy-
namically generated code will be uncommon. Prior to the
creation of Java, this was in fact true. It was reasonable
to assume that slow compiles would only affect software
developers. Now, with JIT virtual machines being used
for many languages, slow code generation affects users as
well.
There were several unsuccessful attempts to commercial-
ize VLIW. The basic problem is that a VLIW computer
does not scale to different price and performance points,
as a dynamically scheduled computer can. Another issue
is that compiler design for VLIW computers is extremely
difficult, and the current crop of compilers (as of 2005)
don't always produce optimal code for these platforms.
Also, VLIW computers optimise for throughput, not low
latency, so they were not attractive to the engineers de-
signing controllers and other computers embedded in ma-
chinery. The embedded systems markets had often pi-
oneered other computer improvements by providing a
large market that did not care about compatibility with
older software.
In January 2000, Transmeta Corporation took the inter-
esting step of placing a compiler in the central process-
ing unit, and making the compiler translate from a ref-
erence byte code (in their case, x86 instructions) to an
internal VLIW instruction set. This approach combines
the hardware simplicity, low power and speed of VLIW
RISC with the compact main memory system and soft-
ware reverse-compatibility provided by popular CISC.
Intel's Itanium chip is based on what they call an
Explicitly Parallel Instruction Computing (EPIC) design.
This design supposedly provides the VLIW advantage
of increased instruction throughput. However, it avoids

some of the issues of scaling and complexity, by explicitly
providing in each “bundle” of instructions information
concerning their dependencies. This information is cal-
culated by the compiler, as it would be in a VLIW design.
The early versions are also backward-compatible with
current x86 software by means of an on-chip emulation
mode. Integer performance was disappointing and de-
spite improvements, sales in volume markets continue to
be low.

4.6.2 Multi-threading

Current designs work best when the computer is run-
ning only a single program, however nearly all modern
operating systems allow the user to run multiple pro-
grams at the same time. For the CPU to change over and
do work on another program requires expensive context
switching. In contrast, multi-threaded CPUs can handle
instructions from multiple programs at once.
To do this, such CPUs include several sets of registers.
When a context switch occurs, the contents of the “work-
ing registers” are simply copied into one of a set of reg-
isters for this purpose.
Such designs often include thousands of registers instead
of hundreds as in a typical design. On the downside, reg-
isters tend to be somewhat expensive in chip space needed
to implement them. This chip space might otherwise be
used for some other purpose.

4.6.3 Multi-core

Multi-core CPUs are typically multiple CPU cores on the
same die, connected to each other via a shared L2 or L3
cache, an on-die bus, or an on-die crossbar switch. All
the CPU cores on the die share interconnect components
with which to interface to other processors and the rest
of the system. These components may include a front
side bus interface, a memory controller to interface with
DRAM, a cache coherent link to other processors, and
a non-coherent link to the southbridge and I/O devices.
The terms multi-core and MPU (which stands forMicro-
ProcessorUnit) have come into general usage for a single
die that contains multiple CPU cores.

Intelligent RAM

One way to work around the Von Neumann bottleneck is
to mix a processor and DRAM all on one chip.

• The Berkeley IRAM Project

• eDRAM

• computational RAM

• Memristor

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Java_Virtual_Machine
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Transmeta_Corporation
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Explicitly_Parallel_Instruction_Computing
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Context_switching
https://en.wikipedia.org/wiki/Context_switching
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Crossbar_switch
https://en.wikipedia.org/wiki/Front_side_bus
https://en.wikipedia.org/wiki/Front_side_bus
https://en.wikipedia.org/wiki/Memory_controller
https://en.wikipedia.org/wiki/Dynamic_random_access_memory
https://en.wikipedia.org/wiki/Cache_coherency
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Southbridge_(computing)
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Von_Neumann_architecture#Von_Neumann_bottleneck
https://en.wikipedia.org/wiki/The_Berkeley_IRAM_Project
https://en.wikipedia.org/wiki/EDRAM
https://en.wikipedia.org/wiki/Computational_RAM
https://en.wikipedia.org/wiki/Memristor

4.6. 1990 TO TODAY: LOOKING FORWARD 21

4.6.4 Reconfigurable logic

Main article: reconfigurable computing

Another track of development is to combine reconfig-
urable logic with a general-purpose CPU. In this scheme,
a special computer language compiles fast-running sub-
routines into a bit-mask to configure the logic. Slower, or
less-critical parts of the program can be run by sharing
their time on the CPU. This process has the capability
to create devices such as software radios, by using digital
signal processing to perform functions usually performed
by analog electronics.

4.6.5 Open source processors

As the lines between hardware and software increasingly
blur due to progress in design methodology and availabil-
ity of chips such as FPGAs and cheaper production pro-
cesses, even open source hardware has begun to appear.
Loosely knit communities like OpenCores have recently
announced completely open CPU architectures such as
the OpenRISC which can be readily implemented on FP-
GAs or in custom produced chips, by anyone, without
paying license fees, and even established processor man-
ufacturers like Sun Microsystems have released processor
designs (e.g. OpenSPARC) under open-source licenses.

4.6.6 Asynchronous CPUs

Main article: Asynchronous CPU

Yet another possibility is the “clockless CPU”
(asynchronous CPU). Unlike conventional proces-
sors, clockless processors have no central clock to
coordinate the progress of data through the pipeline.
Instead, stages of the CPU are coordinated using logic
devices called “pipe line controls” or “FIFO sequencers.”
Basically, the pipeline controller clocks the next stage of
logic when the existing stage is complete. In this way, a
central clock is unnecessary.
It might be easier to implement high performance devices
in asynchronous logic as opposed to clocked logic:

• components can run at different speeds in the clock-
less CPU. In a clocked CPU, no component can run
faster than the clock rate.

• In a clocked CPU, the clock can go no faster than the
worst-case performance of the slowest stage. In a
clockless CPU, when a stage finishes faster than nor-
mal, the next stage can immediately take the results
rather than waiting for the next clock tick. A stage
might finish faster than normal because of the par-
ticular data inputs (multiplication can be very fast if

it is multiplying by 0 or 1), or because it is running at
a higher voltage or lower temperature than normal.

Asynchronous logic proponents believe these capabilities
would have these benefits:

• lower power dissipation for a given performance
level

• highest possible execution speeds

The biggest disadvantage of the clockless CPU is that
most CPU design tools assume a clocked CPU (a
synchronous circuit), so making a clockless CPU (design-
ing an asynchronous circuit) involves modifying the de-
sign tools to handle clockless logic and doing extra testing
to ensure the design avoids metastable problems.
Even so, several asynchronous CPUs have been built, in-
cluding

• the ORDVAC and the identical ILLIAC I (1951)

• the ILLIAC II (1962), the fastest computer in the
world at the time

• The Caltech Asynchronous Microprocessor, the
world-first asynchronous microprocessor (1988)

• the ARM-implementing AMULET (1993 and
2000)

• the asynchronous implementation of MIPS R3000,
dubbed MiniMIPS (1998)

• the SEAforth multi-core processor from Charles H.
Moore [1]

4.6.7 Optical communication

One interesting possibility would be to eliminate the front
side bus. Modern vertical laser diodes enable this change.
In theory, an optical computer’s components could di-
rectly connect through a holographic or phased open-air
switching system. This would provide a large increase in
effective speed and design flexibility, and a large reduc-
tion in cost. Since a computer’s connectors are also its
most likely failure point, a busless system might be more
reliable, as well.
In addition, current (2010) modern processors use 64- or
128-bit logic. Wavelength superposition could allow for
data lanes and logic many orders of magnitude higher,
without additional space or copper wires.

4.6.8 Optical processors

Another long-term possibility is to use light instead of
electricity for the digital logic itself. In theory, this could

https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/Open_source_hardware
https://en.wikipedia.org/wiki/OpenCores
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/OpenSPARC
https://en.wikipedia.org/wiki/Asynchronous_CPU
https://en.wikipedia.org/wiki/Asynchronous_CPU
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Asynchronous_circuit
https://en.wikipedia.org/wiki/Metastability_in_electronics
https://en.wikipedia.org/wiki/ORDVAC
https://en.wikipedia.org/wiki/ILLIAC_I
https://en.wikipedia.org/wiki/ILLIAC_II
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/AMULET_microprocessor
https://en.wikipedia.org/wiki/MIPS_architecture
http://www.async.caltech.edu/mips.html
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Charles_H._Moore
https://en.wikipedia.org/wiki/Charles_H._Moore
https://en.wikipedia.org/wiki/Front_side_bus
https://en.wikipedia.org/wiki/Front_side_bus
https://en.wikipedia.org/wiki/Laser_diode

22 CHAPTER 4. HISTORY OF GENERAL-PURPOSE CPUS

run about 30% faster and use less power, as well as per-
mit a direct interface with quantum computational de-
vices. The chief problem with this approach is that for the
foreseeable future, electronic devices are faster, smaller
(i.e. cheaper) and more reliable. An important theoreti-
cal problem is that electronic computational elements are
already smaller than some wavelengths of light, and there-
fore even wave-guide–based optical logic may be uneco-
nomic compared to electronic logic. The majority of de-
velopment effort, as of 2006 is focused on electronic cir-
cuitry. See also optical computing.

4.6.9 Belt Machine Architecture

Main article: Belt machine

As opposed to conventional register machine or stack
machine architecture, yet similar to Intel’s Itanium
architecture,[2] a temporal register addressing scheme has
been proposed by Ivan Godard & company that is in-
tended to greatly reduce the complexity of CPU hardware
(specifically the number of internal registers and the re-
sulting huge multiplexer trees).[3] While somewhat harder
to read and debug than general-purpose register names,
it is recommended that it be perceived as a moving “con-
veyor belt” where the oldest values “drop off” the belt into
oblivion. It is implemented by the Mill CPU architecture.

4.7 Timeline of events

• 1964. IBM releases the 32-bit IBM System/360
with memory protection.

• 1971. Intel released the 4-bit Intel 4004, the world’s
first commercially available microprocessor.

• 1975. MOS Technology released the 8-bit MOS
Technology 6502, the first integrated processor to
have an affordable price of $25 when the 6800 com-
petition demanded $175.

• 1977. First 32-bit VAX sold, a VAX-11/780.

• 1978. Intel introduces the Intel 8086 and Intel 8088,
the first x86 chips.

• 1981. Stanford MIPS introduced, one of the first
RISC designs.

• 1982. Intel introduces the Intel 80286, which was
the first Intel processor that could run all the soft-
ware written for its predecessors, the 8086 and
8088.

• 1984, Motorola introduces the Motorola
68020+68851, which enabled 32-bit instruc-
tion set and virtualization.

• 1985. Intel introduces the Intel 80386, which adds
a 32-bit instruction set to the x86 microarchitecture.

• 1989. Intel introduces the Intel 80486

• 1993. Intel launches the original Pentium micropro-
cessor, the first processor with a x86 superscalar mi-
croarchitecture.

• 1995. Intel introduces the Pentium Pro which be-
comes the foundation for the Pentium II, Pentium
III, Pentium M, and Intel Core Architectures.

• 2000. AMD announced x86-64 extension to the x86
microarchitecture.

• 2000. AMD hits 1 GHZ with its Athlon micropro-
cessor.

• 2000. Analog Devices introduces the Blackfin ar-
chitecture.

• 2002. Intel releases a Pentium 4 with Hyper-
Threading, the first modern desktop processor to im-
plement simultaneous multithreading (SMT).

• 2003. AMD releases the Athlon 64, the first 64-bit
consumer cpu.

• 2003. Intel introduced the Pentium M, a low power
mobile derivative of the Pentium Pro architecture.

• 2005. AMD announced the Athlon 64 X2, the first
x86 dual-core processor.

• 2006. Intel introduces the Core line of CPUs based
on a modified Pentium M design.

• 2008. About ten billion CPUs were manufactured
in 2008.

• 2010. Intel introduced Core i3, i5, i7 processors.

• 2011. AMD announces the appearance of the
world’s first 8 core CPU for desktop PC’s.

4.8 See also

• Microprocessor chronology

4.9 References
[1] SEAforth Overview "... asynchronous circuit design

throughout the chip. There is no central clock with bil-
lions of dumb nodes dissipating useless power. ... the
processor cores are internally asynchronous themselves.”

[2] http://williams.comp.ncat.edu/comp375/
RISCprocessors.pdf

[3] “The Belt”.

https://en.wikipedia.org/wiki/Optical_computing
https://en.wikipedia.org/wiki/Belt_machine
https://en.wikipedia.org/wiki/Register_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Multiplexer
https://en.wikipedia.org/wiki/Mill_CPU_Architecture
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/Intel_4004
https://en.wikipedia.org/wiki/MOS_Technology
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/VAX-11
https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/Stanford_MIPS
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Intel_80286
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Motorola_68020
https://en.wikipedia.org/wiki/Motorola_68020
https://en.wikipedia.org/wiki/Motorola_68851
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Intel_80486
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Blackfin
https://en.wikipedia.org/wiki/Pentium_4
https://en.wikipedia.org/wiki/Hyper-Threading
https://en.wikipedia.org/wiki/Hyper-Threading
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Microprocessor_chronology
http://www.intellasys.net/index.php?option=com_content&task=view&id=21&Itemid=41
http://williams.comp.ncat.edu/comp375/RISCprocessors.pdf
http://williams.comp.ncat.edu/comp375/RISCprocessors.pdf
http://ootbcomp.com/docs/belt/index.html

4.10. EXTERNAL LINKS 23

4.10 External links
• Great moments in microprocessor history by W.

Warner, 2004

• Great Microprocessors of the Past and Present (V
13.4.0) by: John Bayko, 2003

http://www-128.ibm.com/developerworks/library/pa-microhist.html
http://www-128.ibm.com/developerworks/library/pa-microhist.html
http://jbayko.sasktelwebsite.net/cpu.html
http://jbayko.sasktelwebsite.net/cpu.html

Chapter 5

Processor design

Processor design is the design engineering task of
creating a microprocessor, a component of computer
hardware. It is a subfield of electronics engineering
and computer engineering. The design process in-
volves choosing an instruction set and a certain execu-
tion paradigm (e.g. VLIW or RISC) and results in a
microarchitecture described in e.g. VHDL or Verilog.
This description is then manufactured employing some of
the various semiconductor device fabrication processes.
This results in a die which is bonded onto some chip car-
rier. This chip carrier is then soldered onto some printed
circuit board (PCB).
The mode of operation of any microprocessor is the ex-
ecution of lists of instructions. Instructions typically in-
clude those to compute or manipulate data values using
registers, change or retrieve values in read/write mem-
ory, perform relational tests between data values and to
control program flow.

5.1 Details

CPU design focuses on six main areas:

1. datapaths (such as ALUs and pipelines)

2. control unit: logic which controls the datapaths

3. Memory components such as register files, caches

4. Clock circuitry such as clock drivers, PLLs, clock
distribution networks

5. Pad transceiver circuitry

6. Logic gate cell library which is used to implement
the logic

CPUs designed for high-performance markets might
require custom designs for each of these items to
achieve frequency, power-dissipation, and chip-area goals
whereas CPUs designed for lower performance markets
might lessen the implementation burden by acquiring
some of these items by purchasing them as intellectual
property. Control logic implementation techniques (logic

synthesis using CAD tools) can be used to implement dat-
apaths, register files, and clocks. Common logic styles
used in CPU design include unstructured random logic,
finite-state machines, microprogramming (common from
1965 to 1985), and Programmable logic arrays (common
in the 1980s, no longer common).
Device types used to implement the logic include:

• Transistor-transistor logic Small Scale Integration
logic chips - no longer used for CPUs

• Programmable Array Logic and Programmable
logic devices - no longer used for CPUs

• Emitter-coupled logic (ECL) gate arrays - no longer
common

• CMOS gate arrays - no longer used for CPUs

• CMOS mass-produced ICs - the vast majority of
CPUs by volume

• CMOS ASICs - only for a minority of special appli-
cations due to expense

• Field-programmable gate arrays (FPGA) - common
for soft microprocessors, and more or less required
for reconfigurable computing

A CPU design project generally has these major tasks:

• Programmer-visible instruction set architecture,
which can be implemented by a variety of
microarchitectures

• Architectural study and performance modeling in
ANSI C/C++ or SystemC

• High-level synthesis (HLS) or register transfer level
(RTL, e.g. logic) implementation

• RTL verification

• Circuit design of speed critical components (caches,
registers, ALUs)

• Logic synthesis or logic-gate-level design

24

https://en.wikipedia.org/wiki/Design_engineer
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Electronics_engineering
https://en.wikipedia.org/wiki/Computer_engineering
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Verilog
https://en.wikipedia.org/wiki/Semiconductor_device_fabrication
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/Chip_carrier
https://en.wikipedia.org/wiki/Chip_carrier
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Datapath
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Pipeline_(computing)
https://en.wikipedia.org/wiki/Control_unit
https://en.wikipedia.org/wiki/Phase-locked_loop
https://en.wikipedia.org/wiki/Clock_distribution_network
https://en.wikipedia.org/wiki/Clock_distribution_network
https://en.wikipedia.org/wiki/Library_(electronics)
https://en.wikipedia.org/wiki/Power_consumption
https://en.wikipedia.org/wiki/Intellectual_property
https://en.wikipedia.org/wiki/Intellectual_property
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Microprogramming
https://en.wikipedia.org/wiki/Programmable_logic_array
https://en.wikipedia.org/wiki/Transistor-transistor_logic
https://en.wikipedia.org/wiki/Small_Scale_Integration
https://en.wikipedia.org/wiki/Programmable_Array_Logic
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Emitter-coupled_logic
https://en.wikipedia.org/wiki/Gate_array
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Gate_array
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/ANSI_C
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/SystemC
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/Register_transfer_level
https://en.wikipedia.org/wiki/Circuit_design
https://en.wikipedia.org/wiki/Logic_synthesis

5.2. MARKETS 25

• Timing analysis to confirm that all logic and circuits
will run at the specified operating frequency

• Physical design including floorplanning, place and
route of logic gates

• Checking that RTL, gate-level, transistor-level and
physical-level representations are equivalent

• Checks for signal integrity, chip manufacturability

Re-designing a CPU core to a smaller die-area helps to
shrink everything (a "photomask shrink”), resulting in the
same number of transistors on a smaller die. It improves
performance (smaller transistors switch faster), reduces
power (smaller wires have less parasitic capacitance) and
reduces cost (more CPUs fit on the same wafer of sili-
con). Releasing a CPU on the same size die, but with
a smaller CPU core, keeps the cost about the same but
allows higher levels of integration within one very-large-
scale integration chip (additional cache, multiple CPUs,
or other components), improving performance and re-
ducing overall system cost.
As with most complex electronic designs, the logic verifi-
cation effort (proving that the design does not have bugs)
now dominates the project schedule of a CPU.
Key CPU architectural innovations include index reg-
ister, cache, virtual memory, instruction pipelining,
superscalar, CISC, RISC, virtual machine, emulators,
microprogram, and stack.

5.1.1 Micro-architectural concepts

Main article: Microarchitecture

5.1.2 Research topics

Main article: History of general-purpose CPUs § 1990
to today: looking forward

A variety of new CPU design ideas have been pro-
posed, including reconfigurable logic, clockless CPUs,
computational RAM, and optical computing.

5.1.3 Performance analysis and bench-
marking

Main article: Computer performance

Benchmarking is a way of testing CPU speed. Ex-
amples include SPECint and SPECfp, developed by
Standard Performance Evaluation Corporation, and
ConsumerMark developed by the Embedded Micropro-
cessor Benchmark Consortium EEMBC.

Some of the commonly used metrics include:

• Instructions per second - Most consumers pick a
computer architecture (normally Intel IA32 archi-
tecture) to be able to run a large base of pre-existing
pre-compiled software. Being relatively uninformed
on computer benchmarks, some of them pick a
particular CPU based on operating frequency (see
Megahertz Myth).

• FLOPS - The number of floating point operations
per second is often important in selecting computers
for scientific computations.

• Performance per watt - System designers build-
ing parallel computers, such as Google, pick CPUs
based on their speed per watt of power, because the
cost of powering the CPU outweighs the cost of the
CPU itself.[1][2]

• Some system designers building parallel computers
pick CPUs based on the speed per dollar.

• System designers building real-time computing sys-
tems want to guarantee worst-case response. That is
easier to do when the CPU has low interrupt latency
and when it has deterministic response. (DSP)

• Computer programmers who program directly in as-
sembly language want a CPU to support a full fea-
tured instruction set.

• Low power - For systems with limited power sources
(e.g. solar, batteries, human power).

• Small size or low weight - for portable embedded
systems, systems for spacecraft.

• Environmental impact - Minimizing environmental
impact of computers during manufacturing and re-
cycling as well during use. Reducing waste, reduc-
ing hazardous materials. (see Green computing).

There may be tradeoffs in optimizing some of these met-
rics. In particular, many design techniques that make a
CPU run faster make the “performance per watt”, “per-
formance per dollar”, and “deterministic response” much
worse, and vice versa.

5.2 Markets

There are several different markets in which CPUs are
used. Since each of these markets differ in their require-
ments for CPUs, the devices designed for one market are
in most cases inappropriate for the other markets.

https://en.wikipedia.org/wiki/Static_timing_analysis
https://en.wikipedia.org/wiki/Floorplan_(microelectronics)#Floorplanning
https://en.wikipedia.org/wiki/Place_and_route
https://en.wikipedia.org/wiki/Place_and_route
https://en.wikipedia.org/wiki/Signal_integrity
https://en.wikipedia.org/wiki/Design_rule_checking
https://en.wikipedia.org/wiki/Photomask
https://en.wikipedia.org/wiki/Parasitic_capacitance
https://en.wikipedia.org/wiki/Very-large-scale_integration
https://en.wikipedia.org/wiki/Very-large-scale_integration
https://en.wikipedia.org/wiki/Functional_verification
https://en.wikipedia.org/wiki/Functional_verification
https://en.wikipedia.org/wiki/Index_register
https://en.wikipedia.org/wiki/Index_register
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Microprogram
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/History_of_general-purpose_CPUs#1990_to_today:_looking_forward
https://en.wikipedia.org/wiki/History_of_general-purpose_CPUs#1990_to_today:_looking_forward
https://en.wikipedia.org/wiki/History_of_general-purpose_CPUs#1990_to_today:_looking_forward
https://en.wikipedia.org/wiki/Reconfigurable_logic
https://en.wikipedia.org/wiki/Clockless_CPU
https://en.wikipedia.org/wiki/Computational_RAM
https://en.wikipedia.org/wiki/Optical_computing
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Benchmark_(computing)
https://en.wikipedia.org/wiki/SPECfp
https://en.wikipedia.org/wiki/Standard_Performance_Evaluation_Corporation
https://en.wikipedia.org/wiki/ConsumerMark
https://en.wikipedia.org/wiki/EEMBC
https://en.wikipedia.org/wiki/Instructions_per_second
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/IA32
https://en.wikipedia.org/wiki/Megahertz_Myth
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/Performance_per_watt
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Google_search_technology#Current_hardware
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Interrupt_latency
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Green_computing

26 CHAPTER 5. PROCESSOR DESIGN

5.2.1 General purpose computing

The vast majority of revenues generated from CPU sales
is for general purpose computing, that is, desktop, laptop,
and server computers commonly used in businesses and
homes. In this market, the Intel IA-32 architecture dom-
inates, with its rivals PowerPC and SPARC maintaining
much smaller customer bases. Yearly, hundreds of mil-
lions of IA-32 architecture CPUs are used by this market.
A growing percentage of these processors are for mobile
implementations such as netbooks and laptops.[3]

Since these devices are used to run countless different
types of programs, these CPU designs are not specifically
targeted at one type of application or one function. The
demands of being able to run a wide range of programs
efficiently has made these CPU designs among the more
advanced technically, along with some disadvantages of
being relatively costly, and having high power consump-
tion.

High-end processor economics

In 1984, most high-performance CPUs required four to
five years to develop.[4]

5.2.2 Scientific computing

Main article: Supercomputer

Scientific computing is a much smaller niche market (in
revenue and units shipped). It is used in government re-
search labs and universities. Before 1990, CPU design
was often done for this market, but mass market CPUs
organized into large clusters have proven to be more af-
fordable. The main remaining area of active hardware
design and research for scientific computing is for high-
speed data transmission systems to connect mass market
CPUs.

5.2.3 Embedded design

Main article: Embedded system

As measured by units shipped, most CPUs are embed-
ded in other machinery, such as telephones, clocks, ap-
pliances, vehicles, and infrastructure. Embedded proces-
sors sell in the volume of many billions of units per year,
however, mostly at much lower price points than that of
the general purpose processors.
These single-function devices differ from the more famil-
iar general-purpose CPUs in several ways:

• Low cost is of high importance.

• It is important to maintain a low power dissipation as
embedded devices often have a limited battery life
and it is often impractical to include cooling fans.[5]

• To give lower system cost, peripherals are integrated
with the processor on the same silicon chip.

• Keeping peripherals on-chip also reduces power
consumption as external GPIO ports typically re-
quire buffering so that they can source or sink the
relatively high current loads that are required to
maintain a strong signal outside of the chip.

• Many embedded applications have a limited
amount of physical space for circuitry; keep-
ing peripherals on-chip will reduce the space
required for the circuit board.

• The program and data memories are often in-
tegrated on the same chip. When the only al-
lowed program memory is ROM, the device is
known as a microcontroller.

• For many embedded applications, interrupt latency
will be more critical than in some general-purpose
processors.

Embedded processor economics

The embedded CPU family with the largest number of
total units shipped is the 8051, averaging nearly a billion
units per year.[6] The 8051 is widely used because it is
very inexpensive. The design time is now roughly zero,
because it is widely available as commercial intellectual
property. It is now often embedded as a small part of a
larger system on a chip. The silicon cost of an 8051 is
now as low as US$0.001, because some implementations
use as few as 2,200 logic gates and take 0.0127 square
millimeters of silicon.[7][8]

As of 2009, more CPUs are produced using the ARM
architecture instruction set than any other 32-bit instruc-
tion set.[9][10] The ARM architecture and the first ARM
chip were designed in about one and a half years and 5
human years of work time.[11]

The 32-bit Parallax Propeller microcontroller architec-
ture and the first chip were designed by two people in
about 10 human years of work time.[12]

The 8-bit AVR architecture and first AVR microcon-
troller was conceived and designed by two students at the
Norwegian Institute of Technology.
The 8-bit 6502 architecture and the first MOS Technol-
ogy 6502 chip were designed in 13 months by a group of
about 9 people.[13]

Research and educational CPU design

The 32 bit Berkeley RISC I and RISC II architecture and
the first chips were mostly designed by a series of students

https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/8051
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Parallax_Propeller
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Berkeley_RISC

5.4. REFERENCES 27

as part of a four quarter sequence of graduate courses.[14]

This design became the basis of the commercial SPARC
processor design.
For about a decade, every student taking the 6.004 class
at MIT was part of a team—each team had one semester
to design and build a simple 8 bit CPU out of 7400 series
integrated circuits. One team of 4 students designed and
built a simple 32 bit CPU during that semester. [15]

Some undergraduate courses require a team of 2 to 5 stu-
dents to design, implement, and test a simple CPU in a
FPGA in a single 15 week semester. [16]

The MultiTitan CPU was designed with 2.5 man years
of effort, which was considered “relatively little design
effort” at the time.[17] 24 people contributed to the 3.5
year MultiTitan research project, which included design-
ing and building a prototype CPU.[18]

Soft microprocessor cores

Main article: Soft microprocessor

For embedded systems, the highest performance levels
are often not needed or desired due to the power con-
sumption requirements. This allows for the use of proces-
sors which can be totally implemented by logic synthesis
techniques. These synthesized processors can be imple-
mented in a much shorter amount of time, giving quicker
time-to-market.

5.3 See also

• Central processing unit

• Comparison of instruction set architectures

• History of general-purpose CPUs

• Microprocessor

• Microarchitecture

• Moore’s law

• Amdahl’s law

• System-on-a-chip

• Reduced instruction set computer

• Complex instruction set computer

• Minimal instruction set computer

• Electronic design automation

• High-level synthesis

5.4 References
[1] “EEMBC ConsumerMark”. Archived from the original

on March 27, 2005.

[2] Stephen Shankland (December 9, 2005). “Power could
cost more than servers, Google warns”.

[3] Kerr, Justin. “AMD Loses Market Share as Mobile CPU
Sales Outsell Desktop for the First Time.” Maximum PC.
Published 2010-10-26.

[4] “New system manages hundreds of transactions per sec-
ond” article by Robert Horst and Sandra Metz, of Tandem
Computers Inc., “Electronics” magazine, 1984 April 19:
“While most high-performance CPUs require four to five
years to develop, The NonStop TXP processor took just
2+1/2 years -- six months to develop a complete written
specification, one year to construct a working prototype,
and another year to reach volume production.”

[5] S. Mittal, "A survey of techniques for improving energy
efficiency in embedded computing systems", IJCAET,
6(4), 440–459, 2014.

[6] http://people.wallawalla.edu/~{}curt.nelson/engr355/
lecture/8051_overview.pdf

[7] Square millimeters per 8051, 0.013 in 45nm line-widths;
see

[8] To figure dollars per square millimeter, see , and note that
an SOC component has no pin or packaging costs.

[9] “ARM Cores Climb Into 3G Territory” by Mark
Hachman, 2002.

[10] “The Two Percent Solution” by Jim Turley 2002.

[11] “ARM’s way” 1998

[12] “Why the Propeller Works” by Chip Gracey

[13] “Interview with William Mensch”

[14] 'Design and Implementation of RISC I' - original journal
article by C.E. Sequin and D.A.Patterson

[15] “the VHS”

[16] “Teaching Computer Design with FPGAs” by Jan Gray

[17] Norman P. Jouppi and Jeffrey Y. F. Tang. “A 20-
MIPS Sustained 32-bit CMOS Microprocessor with
High Ratio of Sustained to Peak Performance”. 1989.
doi:10.1.1.85.988. p. “i”.

[18] “MultiTitan: Four Architecture Papers”. 1988. p. 4-5.

• Hwang, Enoch (2006). Digital Logic and Micropro-
cessor Design with VHDL. Thomson. ISBN 0-534-
46593-5.

• Processor Design: An Introduction

https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/7400_series
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures
https://en.wikipedia.org/wiki/History_of_general-purpose_CPUs
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Moore%2527s_law
https://en.wikipedia.org/wiki/Amdahl%2527s_law
https://en.wikipedia.org/wiki/System-on-a-chip
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/High-level_synthesis
http://web.archive.org/web/20050327005323/http://www.eembc.org/benchmark/consumer.asp?HTYPE=SIM
http://www.eembc.org/benchmark/consumer.asp?HTYPE=SIM
http://www.zdnet.com/article/power-could-cost-more-than-servers-google-warns/
http://www.zdnet.com/article/power-could-cost-more-than-servers-google-warns/
http://www.maximumpc.com/article/news/amd_loses_market_share_mobile_cpu_sales_outsell_desktop_first_time
http://www.maximumpc.com/article/news/amd_loses_market_share_mobile_cpu_sales_outsell_desktop_first_time
https://en.wikipedia.org/wiki/NonStop
https://www.academia.edu/4186102/A_survey_of_techniques_for_improving_energy_efficiency_in_embedded_computing_systems
https://www.academia.edu/4186102/A_survey_of_techniques_for_improving_energy_efficiency_in_embedded_computing_systems
http://people.wallawalla.edu/~curt.nelson/engr355/lecture/8051_overview.pdf
http://people.wallawalla.edu/~curt.nelson/engr355/lecture/8051_overview.pdf
http://www.keil.com/dd/docs/datashts/evatronix/t8051_ds.pdf
http://www.keil.com/dd/docs/datashts/evatronix/t8051_ds.pdf
http://www.extremetech.com/extreme/52180-arm-cores-climb-into-3g-territory
http://www.embedded.com/electronics-blogs/significant-bits/4024488/The-Two-Percent-Solution
http://web.archive.org/web/20090606152116/http://atterer.net/acorn/arm.html
http://www.parallax.com/Portals/0/Downloads/docs/article/WhythePropellerWorks.pdf
https://en.wikipedia.org/wiki/Chip_Gracey
http://silicongenesis.stanford.edu/transcripts/mensch.htm
http://www.eecs.berkeley.edu/Pubs/TechRpts/1982/CSD-82-106.pdf
https://en.wikipedia.org/wiki/Carlo_Sequin
https://en.wikipedia.org/wiki/David_A._Patterson_(scientist)
http://sub-zero.mit.edu/fbyte/hacks/vhs/
http://www.fpgacpu.org/teaching.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.988&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.988&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.988&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1.1.85.988
ftp://ftp.hpl.hp.com/pub/DEC/WRL/research-reports/WRL-TR-87.8.pdf
https://en.wikipedia.org/wiki/Enoch_Hwang
http://faculty.lasierra.edu/~ehwang/digitaldesign
http://faculty.lasierra.edu/~ehwang/digitaldesign
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-534-46593-5
https://en.wikipedia.org/wiki/Special:BookSources/0-534-46593-5
http://www.gamezero.com/team-0/articles/math_magic/micro/index.html

Chapter 6

Very long instruction word

Very long instruction word (VLIW) refers to processor
architectures designed to take advantage of instruction
level parallelism (ILP). Whereas conventional processors
mostly allow programs only to specify instructions that
will be executed in sequence, a VLIW processor allows
programs to explicitly specify instructions that will be ex-
ecuted at the same time (that is, in parallel). This type
of processor architecture is intended to allow higher per-
formance without the inherent complexity of some other
approaches.

6.1 Overview

Traditional approaches to improving performance in pro-
cessor architectures include breaking up instructions into
sub-steps so that instructions can be executed partially at
the same time (known as pipelining), dispatching individ-
ual instructions to be executed completely independently
in different parts of the processor (superscalar architec-
tures), and even executing instructions in an order dif-
ferent from the program (out-of-order execution). These
approaches all involve increased hardware complexity
(higher cost, larger circuits, higher power consumption)
because the processor must intrinsically make all of the
decisions internally for these approaches to work. The
VLIW approach, by contrast, depends on the programs
themselves providing all the decisions regarding which in-
structions are to be executed simultaneously and how con-
flicts are to be resolved. As a practical matter this means
that the compiler (software used to create the final pro-
grams) becomes much more complex, but the hardware
is simpler than many other approaches to parallelism.
The acronym VLIW may also refer to variable-length in-
struction word, a criteria in instruction set design to al-
low for a more flexible layout of the instruction set and
higher code density (depending on the instructions to be
used). For example, this approach makes it possible to
load an immediate value of the size of a machine word
into a processor register, which would not be feasible if
each instruction was limited to the size of machine word.
The flexibility comes at an additional cost for instruction
decoding.[1][2]

6.2 Motivation

A processor that executes every instruction one after the
other (i.e. a non-pipelined scalar architecture) may use
processor resources inefficiently, potentially leading to
poor performance. The performance can be improved
by executing different sub-steps of sequential instructions
simultaneously (this is pipelining), or even executing mul-
tiple instructions entirely simultaneously as in superscalar
architectures. Further improvement can be achieved by
executing instructions in an order different from the or-
der they appear in the program; this is called out-of-order
execution.
These three techniques all come at the cost of increased
hardware complexity. Before executing any operations
in parallel the processor must verify that the instructions
do not have interdependencies. For example, if a first in-
struction’s result is used as a second instruction’s input
then they cannot execute at the same time and the sec-
ond instruction can't be executed before the first. Mod-
ern out-of-order processors have increased the hardware
resources which do the scheduling of instructions and de-
termining of interdependencies.
The VLIW approach, on the other hand, executes oper-
ations in parallel based on a fixed schedule determined
when programs are compiled. Since determining the or-
der of execution of operations (including which opera-
tions can execute simultaneously) is handled by the com-
piler, the processor does not need the scheduling hard-
ware that the three techniques described above require.
As a result, VLIW CPUs offer significant computational
power with less hardware complexity (but greater com-
piler complexity) than is associated with most superscalar
CPUs.

6.3 Design

In superscalar designs, the number of execution units is
invisible to the instruction set. Each instruction encodes
only one operation. For most superscalar designs, the in-
struction width is 32 bits or fewer.
In contrast, one VLIW instruction encodes multiple op-

28

https://en.wikipedia.org/wiki/Processor_architecture
https://en.wikipedia.org/wiki/Processor_architecture
https://en.wikipedia.org/wiki/Instruction_level_parallelism
https://en.wikipedia.org/wiki/Instruction_level_parallelism
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Pipelining
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Dependence_analysis
https://en.wikipedia.org/wiki/Compiler

6.4. HISTORY 29

erations; specifically, one instruction encodes at least one
operation for each execution unit of the device. For ex-
ample, if a VLIW device has five execution units, then a
VLIW instruction for that device would have five opera-
tion fields, each field specifying what operation should be
done on that corresponding execution unit. To accommo-
date these operation fields, VLIW instructions are usually
at least 64 bits wide, and on some architectures are much
wider.
For example, the following is an instruction for the
SHARC. In one cycle, it does a floating-point multiply,
a floating-point add, and two autoincrement loads. All of
this fits into a single 48-bit instruction:
f12 = f0 * f4, f8 = f8 + f12, f0 = dm(i0, m3), f4 = pm(i8,
m9);
Since the earliest days of computer architecture,[3] some
CPUs have added several additional arithmetic logic units
(ALUs) to run in parallel. Superscalar CPUs use hard-
ware to decide which operations can run in parallel at
runtime, while VLIW CPUs use software (the compiler)
to decide which operations can run in parallel in ad-
vance. Because the complexity of instruction scheduling
is pushed off onto the compiler, complexity of the hard-
ware can be substantially reduced.
A similar problem occurs when the result of a parallelis-
able instruction is used as input for a branch. Most mod-
ern CPUs “guess” which branch will be taken even before
the calculation is complete, so that they can load up the in-
structions for the branch, or (in some architectures) even
start to compute them speculatively. If the CPU guesses
wrong, all of these instructions and their context need to
be “flushed” and the correct ones loaded, which is time-
consuming.
This has led to increasingly complex instruction-dispatch
logic that attempts to guess correctly, and the simplic-
ity of the original RISC designs has been eroded. VLIW
lacks this logic, and therefore lacks its power consump-
tion, possible design defects and other negative features.
In a VLIW, the compiler uses heuristics or profile infor-
mation to guess the direction of a branch. This allows it to
move and preschedule operations speculatively before the
branch is taken, favoring the most likely path it expects
through the branch. If the branch goes the unexpected
way, the compiler has already generated compensatory
code to discard speculative results to preserve program
semantics.
Vector processor (SIMD) cores can be combined with the
VLIW architecture such as in the Fujitsu FR-V micropro-
cessor, further increasing throughput and speed.

6.4 History

The term VLIW, and the concept of VLIW architecture
itself, were invented by Josh Fisher in his research group

at Yale University in the early 1980s.[4] His original de-
velopment of trace scheduling as a compilation technique
for VLIW was developed when he was a graduate student
at New York University. Prior to VLIW, the notion of
prescheduling execution units and instruction-level paral-
lelism in software was well established in the practice of
developing horizontal microcode.
Fisher’s innovations were around developing a compiler
that could target horizontal microcode from programs
written in an ordinary programming language. He re-
alized that to get good performance and target a wide-
issue machine, it would be necessary to find parallelism
beyond that generally within a basic block. He also devel-
oped region scheduling techniques to identify parallelism
beyond basic blocks. Trace scheduling is such a tech-
nique, and involves scheduling the most likely path of ba-
sic blocks first, inserting compensation code to deal with
speculative motions, scheduling the second most likely
trace, and so on, until the schedule is complete.
Fisher’s second innovation was the notion that the target
CPU architecture should be designed to be a reasonable
target for a compiler — that the compiler and the archi-
tecture for a VLIW processor must be co-designed. This
was partly inspired by the difficulty Fisher observed at
Yale of compiling for architectures like Floating Point
Systems' FPS164, which had a complex instruction set
architecture (CISC) that separated instruction initiation
from the instructions that saved the result, requiring very
complicated scheduling algorithms. Fisher developed a
set of principles characterizing a proper VLIW design,
such as self-draining pipelines, wide multi-port register
files, and memory architectures. These principles made
it easier for compilers to write fast code.
The first VLIW compiler was described in a Ph.D. the-
sis by John Ellis, supervised by Fisher. The compiler
was christened Bulldog, after Yale’s mascot.[5] John Rut-
tenberg also developed certain important algorithms for
scheduling.
Fisher left Yale in 1984 to found a startup company,
Multiflow, along with co-founders John O'Donnell and
John Ruttenberg. Multiflow produced the TRACE series
of VLIW minisupercomputers, shipping their first ma-
chines in 1987. Multiflow’s VLIW could issue 28 opera-
tions in parallel per instruction. The TRACE system was
implemented in an MSI/LSI/VLSI mix packaged in cab-
inets, a technology that fell out of favor when it became
more cost-effective to integrate all of the components of
a processor (excluding memory) on a single chip.
Multiflow was too early to catch the following wave, when
chip architectures began to allow multiple-issue CPUs
. The major semiconductor companies recognized the
value of Multiflow technology in this context, so the com-
piler and architecture were subsequently licensed to most
of these companies.

https://en.wikipedia.org/wiki/Super_Harvard_Architecture_Single-Chip_Computer
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Speculative_execution
https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/Vector_processor
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/FR-V
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Algorithm_efficiency#Speed
https://en.wikipedia.org/wiki/Josh_Fisher
https://en.wikipedia.org/wiki/Yale_University
https://en.wikipedia.org/wiki/Trace_scheduling
https://en.wikipedia.org/wiki/New_York_University
https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/Microcode#Horizontal_microcode
https://en.wikipedia.org/wiki/Wide-issue
https://en.wikipedia.org/wiki/Wide-issue
https://en.wikipedia.org/wiki/Basic_block
https://en.wikipedia.org/wiki/Region_scheduling
https://en.wikipedia.org/wiki/Floating_Point_Systems
https://en.wikipedia.org/wiki/Floating_Point_Systems
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Self-draining_pipeline
https://en.wikipedia.org/wiki/Register_file
https://en.wikipedia.org/wiki/Register_file
https://en.wikipedia.org/wiki/Memory_architecture
https://en.wikipedia.org/wiki/Multiflow
https://en.wikipedia.org/wiki/Minisupercomputer

30 CHAPTER 6. VERY LONG INSTRUCTION WORD

6.5 Implementations

Cydrome was a company producing VLIW numeric pro-
cessors using ECL technology in the same timeframe
(late 1980s). This company, like Multiflow, went out of
business after a few years.
One of the licensees of the Multiflow technology is
Hewlett-Packard, which Josh Fisher joined after Multi-
flow’s demise. Bob Rau, founder of Cydrome, also joined
HP after Cydrome failed. These two would lead com-
puter architecture research within Hewlett-Packard dur-
ing the 1990s.
In addition to the above systems, at around the same pe-
riod (i.e. 1989-1990), Intel implemented VLIW in the
Intel i860, their first 64bit microprocessor; the i860 was
also the first processor to implement VLIW on a single
chip.[6] This processor could operate in both simple RISC
mode and VLIW mode:

In the early 1990s, Intel introduced the
i860 RISC microprocessor. This simple chip
had two modes of operation: a scalar mode and
a VLIW mode. In the VLIW mode, the pro-
cessor always fetched two instructions and as-
sumed that one was an integer instruction and
the other floating-point.[6]

The i860’s VLIW mode was used extensively in embed-
ded DSP applications since the application execution and
datasets were simple, well ordered and predictable, al-
lowing the designer to take full advantage of the parallel
execution advantages that VLIW lent itself to; in VLIW
mode the i860 was able to maintain floating-point perfor-
mance in the range of 20-40 double-precision MFLOPS
(an extremely high figure for its time and for a processor
operating at 25-50Mhz).
In the 1990s, Hewlett-Packard researched this problem
as a side effect of ongoing work on their PA-RISC pro-
cessor family. They found that the CPU could be greatly
simplified by removing the complex dispatch logic from
the CPU and placing it into the compiler. Compilers of
the day were much more complex than those from the
1980s, so the added complexity in the compiler was con-
sidered to be a small cost.
VLIW CPUs are usually constructed of multiple RISC-
like execution units that operate independently. Contem-
porary VLIWs typically have four to eight main execution
units. Compilers generate initial instruction sequences
for the VLIW CPU in roughly the same manner that they
do for traditional CPUs, generating a sequence of RISC-
like instructions. The compiler analyzes this code for
dependence relationships and resource requirements. It
then schedules the instructions according to those con-
straints. In this process, independent instructions can be
scheduled in parallel. Because VLIWs typically represent
instructions scheduled in parallel with a longer instruction

word that incorporates the individual instructions, this re-
sults in a much longer opcode (thus the term “very long”)
to specify what executes on a given cycle.
Examples of contemporary VLIW CPUs include the
TriMedia media processors by NXP (formerly Philips
Semiconductors), the SHARC DSP by Analog Devices,
the C6000 DSP family by Texas Instruments, the STMi-
croelectronics ST200 family based on the Lx architecture
(designed in Josh Fisher’s HP lab by Paolo Faraboschi),
and the MPPA MANYCORE family by KALRAY.
These contemporary VLIW CPUs are primarily success-
ful as embedded media processors for consumer elec-
tronic devices.
VLIW features have also been added to configurable pro-
cessor cores for SoC designs. For example, Tensilica’s
Xtensa LX2 processor incorporates a technology dubbed
FLIX (Flexible Length Instruction eXtensions) that al-
lows multi-operation instructions. The Xtensa C/C++
compiler can freely intermix 32- or 64-bit FLIX instruc-
tions with the Xtensa processor’s single-operation RISC
instructions, which are 16 or 24 bits wide. By pack-
ing multiple operations into a wide 32- or 64-bit instruc-
tion word and allowing these multi-operation instructions
to be intermixed with shorter RISC instructions, FLIX
technology allows SoC designers to realize VLIW’s per-
formance advantages while eliminating the code bloat of
early VLIW architectures. The Infineon Carmel DSP is
another VLIW processor core intended for SoC; it uses a
similar code density improvement technique called “con-
figurable long instruction word” (CLIW). [7]

Outside embedded processing markets, Intel’s Itanium
IA-64 EPIC and Elbrus 2000 appear as the only examples
of a widely used VLIW CPU architectures. However,
EPIC architecture is sometimes distinguished from a pure
VLIW architecture, since EPIC advocates full instruc-
tion predication, rotating register files, and a very long
instruction word that can encode non-parallel instruction
groups. VLIWs also gained significant consumer pene-
tration in the GPU market, though both Nvidia and AMD
have since moved to RISC architectures in order to im-
prove performance on non-graphics workloads.
ATI’s/AMD’s TeraScale microarchitecture for GPUs is a
VLIW microarchitecture.
In December 2015 the first shipment of PCs based on
VLIW CPU Elbrus-4s was made in Russia [8]

6.6 Backward compatibility

When silicon technology allowed for wider implementa-
tions (with more execution units) to be built, the compiled
programs for the earlier generation would not run on the
wider implementations, as the encoding of the binary in-
structions depended on the number of execution units of
the machine.

https://en.wikipedia.org/wiki/Cydrome
https://en.wikipedia.org/wiki/Emitter-coupled_logic
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Josh_Fisher
https://en.wikipedia.org/wiki/Bob_Rau
https://en.wikipedia.org/wiki/Intel_i860
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/TriMedia_(mediaprocessor)
https://en.wikipedia.org/wiki/Super_Harvard_Architecture_Single-Chip_Computer
https://en.wikipedia.org/wiki/Texas_Instruments_TMS320#C6000_series
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/ST200_family
https://en.wikipedia.org/wiki/System-on-a-Chip
https://en.wikipedia.org/wiki/Xtensa
https://en.wikipedia.org/wiki/Code_bloat
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Explicitly_Parallel_Instruction_Computing
https://en.wikipedia.org/wiki/Elbrus_2000
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/ATI_Technologies
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/TeraScale_(microarchitecture)
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Elbrus-2S+

6.9. EXTERNAL LINKS 31

Transmeta addresses this issue by including a binary-
to-binary software compiler layer (termed code morph-
ing) in their Crusoe implementation of the x86 architec-
ture. Basically, this mechanism is advertised to recom-
pile, optimize, and translate x86 opcodes at runtime into
the CPU’s internal machine code. Thus, the Transmeta
chip is internally a VLIW processor, effectively decou-
pled from the x86 CISC instruction set that it executes.
Intel’s Itanium architecture (among others) solved the
backward-compatibility problem with a more general
mechanism. Within each of the multiple-opcode instruc-
tions, a bit field is allocated to denote dependency on the
previous VLIW instruction within the program instruc-
tion stream. These bits are set at compile time, thus re-
lieving the hardware from calculating this dependency in-
formation. Having this dependency information encoded
into the instruction stream allows wider implementations
to issue multiple non-dependent VLIW instructions in
parallel per cycle, while narrower implementations would
issue a smaller number of VLIW instructions per cycle.
Another perceived deficiency of VLIW architectures is
the code bloat that occurs when not all of the execu-
tion units have useful work to do and thus have to exe-
cute NOPs. This occurs when there are dependencies in
the code and the instruction pipelines must be allowed to
drain before subsequent operations can proceed.
Since the number of transistors on a chip has grown, the
perceived disadvantages of the VLIW have diminished in
importance. The VLIW architecture is growing in pop-
ularity, particularly in the embedded market, where it
is possible to customize a processor for an application
in an embedded system-on-a-chip. Embedded VLIW
products are available from several vendors, including
the FR-V from Fujitsu, the BSP15/16 from Pixelworks,
the ST231 from STMicroelectronics, the TriMedia from
NXP, the CEVA-X DSP from CEVA, the Jazz DSP from
Improv Systems, and Silicon Hive. The Texas Instru-
ments TMS320 DSP line has evolved, in its C6xxx fam-
ily, to look more like a VLIW, in contrast to the earlier
C5xxx family.

6.7 See also
• Explicitly parallel instruction computing (EPIC)

• Transport triggered architecture (TTA)

• Elbrus processors

• Mill CPU Architecture

6.8 References
[1] Wai-Kai Chen (2000). Memory, Microprocessor, and

ASIC. books.google.com (CRC Press). pp. 11–14, 11–15.
Retrieved 2014-08-19.

[2] Heidi Pan; Krste Asanovic (2001). “Heads and Tails: A
Variable-Length Instruction Format Supporting Parallel
Fetch and Decode” (PDF). scale.eecs.berkeley.edu. Re-
trieved 2014-08-19.

[3] “CONTROL DATA 6400/6500/6600 COMPUTER
SYSTEMS Reference Manual”. 1969-02-21. Retrieved
7 November 2013.

[4] Fisher, Joseph A. (1983). “Very Long Instruction Word
architectures and the ELI-512” (PDF). Proceedings of the
10th annual international symposium on Computer archi-
tecture. International Symposium on Computer Archi-
tecture. New York, NY, USA: ACM. pp. 140–150.
doi:10.1145/800046.801649. ISBN 0-89791-101-6. Re-
trieved 2009-04-27.

[5] “ACM 1985 Doctoral Dissertation Award”. ACM. Re-
trieved 2007-10-15. For his dissertation Bulldog: A Com-
piler for VLIW Architecture.

[6] “An Introduction To Very-Long Instruction Word
(VLIW) Computer Architecture” (PDF). Philips Semi-
conductors. Archived from the original (PDF) on
2011-09-29.

[7] “EEMBC Publishes Benchmark Scores for Infineon Tech-
nologies’ Carmel DSP Core and TriCore TC11IB Micro-
controller”

[8] http://tass.ru/ekonomika/2498729

6.9 External links
• Paper That Introduced VLIWs

• Book on the history of Multiflow Computer, VLIW
pioneering company

• ISCA “Best Papers” Retrospective On Paper That
Introduced VLIWs

• VLIW and Embedded Processing

• FR500 VLIW-architecture High-performance Em-
bedded Microprocessor

• Historical background for EPIC instruction set ar-
chitectures

https://en.wikipedia.org/wiki/Transmeta
https://en.wikipedia.org/wiki/Binary_translation
https://en.wikipedia.org/wiki/Binary_translation
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Code_bloat
https://en.wikipedia.org/wiki/NOP
https://en.wikipedia.org/wiki/System-on-a-chip
https://en.wikipedia.org/wiki/FR-V
https://en.wikipedia.org/wiki/Fujitsu
http://www.pixelworks.com/
https://en.wikipedia.org/wiki/Pixelworks
https://en.wikipedia.org/wiki/ST231
http://www.nxp.com/products/nexperia/home/products/media_processors/index.html
https://en.wikipedia.org/wiki/NXP_Semiconductors
https://en.wikipedia.org/wiki/CEVA-X_DSP
https://en.wikipedia.org/wiki/Jazz_DSP
http://www.siliconhive.com/
https://en.wikipedia.org/wiki/TMS320
https://en.wikipedia.org/wiki/Explicitly_parallel_instruction_computing
https://en.wikipedia.org/wiki/Transport_triggered_architecture
https://en.wikipedia.org/wiki/Elbrus_(computer)
https://en.wikipedia.org/wiki/Mill_CPU_Architecture
http://books.google.com/books?id=R7_d8hC2gLEC&pg=SA11-PA14&lpg=SA11-PA14&dq=variable-length+instruction+word&source=bl&ots=ljtD-E2un7&sig=sen62X7yrNi4UozUefHJ020EwSI&hl=en&sa=X&ei=PdbyU8v-I4HuyQOQ3YHYAw&redir_esc=y#v=onepage&q=variable-length%2520instruction%2520word&f=false
http://books.google.com/books?id=R7_d8hC2gLEC&pg=SA11-PA14&lpg=SA11-PA14&dq=variable-length+instruction+word&source=bl&ots=ljtD-E2un7&sig=sen62X7yrNi4UozUefHJ020EwSI&hl=en&sa=X&ei=PdbyU8v-I4HuyQOQ3YHYAw&redir_esc=y#v=onepage&q=variable-length%2520instruction%2520word&f=false
http://scale.eecs.berkeley.edu/papers/hat-cases2001.pdf
http://scale.eecs.berkeley.edu/papers/hat-cases2001.pdf
http://scale.eecs.berkeley.edu/papers/hat-cases2001.pdf
http://ed-thelen.org/comp-hist/CDC-6600-R-M.html
http://ed-thelen.org/comp-hist/CDC-6600-R-M.html
https://en.wikipedia.org/wiki/Josh_Fisher
http://doi.acm.org/10.1145/800046.801649
http://doi.acm.org/10.1145/800046.801649
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F800046.801649
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-89791-101-6
http://awards.acm.org/citation.cfm?id=9267768&srt=year&year=1985&aw=146&ao=DOCDISRT
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://web.archive.org/web/20110929113559/http://www.nxp.com/acrobat_download2/other/vliw-wp.pdf
http://web.archive.org/web/20110929113559/http://www.nxp.com/acrobat_download2/other/vliw-wp.pdf
http://www.nxp.com/acrobat_download2/other/vliw-wp.pdf
http://www.eembc.org/press/pressrelease/020313.htm
http://www.eembc.org/press/pressrelease/020313.htm
http://www.eembc.org/press/pressrelease/020313.htm
http://tass.ru/ekonomika/2498729
http://doi.acm.org/10.1145/800046.801649
http://www.multiflowthebook.com/
http://www.multiflowthebook.com/
http://www.hpl.hp.com/news/2005/jul-sep/VLIW_retrospective.pdf
http://www.hpl.hp.com/news/2005/jul-sep/VLIW_retrospective.pdf
http://www.vliw.org/
http://www.fujitsu.com/downloads/MAG/vol36-1/paper06.pdf
http://www.fujitsu.com/downloads/MAG/vol36-1/paper06.pdf
http://people.cs.clemson.edu/~mark/epic.html
http://people.cs.clemson.edu/~mark/epic.html

Chapter 7

Dataflow architecture

Dataflow architecture is a computer architecture that
directly contrasts the traditional von Neumann architec-
ture or control flow architecture. Dataflow architectures
do not have a program counter, or (at least conceptually)
the executability and execution of instructions is solely
determined based on the availability of input arguments
to the instructions, so that the order of instruction execu-
tion is unpredictable: i. e. behavior is indeterministic.
Although no commercially successful general-purpose
computer hardware has used a dataflow architecture, it
has been successfully implemented in specialized hard-
ware such as in digital signal processing, network routing,
graphics processing, telemetry, and more recently in data
warehousing. It is also very relevant in many software ar-
chitectures today including database engine designs and
parallel computing frameworks.
Synchronous dataflow architectures tune to match the
workload presented by real-time data path applications
such as wire speed packet forwarding. Dataflow ar-
chitectures that are deterministic in nature enable pro-
grammers to manage complex tasks such as processor
load balancing, synchronization and accesses to common
resources.[1]

Meanwhile, there is a clash of terminology, since the term
dataflow is used for a subarea of parallel programming:
for dataflow programming.

7.1 History

Hardware architectures for dataflow was a major topic
in computer architecture research in the 1970s and early
1980s. Jack Dennis of MIT pioneered the field of static
dataflow architectures while the Manchester Dataflow
Machine[2] and MIT Tagged Token architecture were
major projects in dynamic dataflow.
The research, however, never overcame the problems re-
lated to:

• Efficiently broadcasting data tokens in a massively
parallel system.

• Efficiently dispatching instruction tokens in a mas-
sively parallel system.

• Building CAMs large enough to hold all of the de-
pendencies of a real program.

Instructions and their data dependencies proved to be too
fine-grained to be effectively distributed in a large net-
work. That is, the time for the instructions and tagged
results to travel through a large connection network was
longer than the time to actually do the computations.
Nonetheless, Out-of-order execution (OOE) has become
the dominant computing paradigm since the 1990s. It is
a form of restricted dataflow. This paradigm introduced
the idea of an execution window. The execution window
follows the sequential order of the von Neumann archi-
tecture, however within the window, instructions are al-
lowed to be completed in data dependency order. This
is accomplished in CPUs that dynamically tag the data
dependencies of the code in the execution window. The
logical complexity of dynamically keeping track of the
data dependencies, restricts OOE CPUs to a small num-
ber of execution units (2-6) and limits the execution win-
dow sizes to the range of 32 to 200 instructions, much
smaller than envisioned for full dataflow machines.

7.2 Dataflow architecture topics

7.2.1 Static and dynamic dataflow ma-
chines

Designs that use conventional memory addresses as data
dependency tags are called static dataflow machines.
These machines did not allow multiple instances of the
same routines to be executed simultaneously because the
simple tags could not differentiate between them.
Designs that use content-addressable memory (CAM) are
called dynamic dataflow machines. They use tags in
memory to facilitate parallelism.

7.2.2 Compiler

Normally, in the control flow architecture, compilers ana-
lyze program source code for data dependencies between

32

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Network_routing
https://en.wikipedia.org/wiki/Graphics_processing
https://en.wikipedia.org/wiki/Telemetry
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Jack_Dennis
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Content-addressable_memory
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Content-addressable_memory
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Source_code

7.4. REFERENCES 33

instructions in order to better organize the instruction se-
quences in the binary output files. The instructions are
organized sequentially but the dependency information it-
self is not recorded in the binaries. Binaries compiled for
a dataflow machine contain this dependency information.
A dataflow compiler records these dependencies by cre-
ating unique tags for each dependency instead of using
variable names. By giving each dependency a unique tag,
it allows the non-dependent code segments in the binary
to be executed out of order and in parallel.

7.2.3 Programs

Programs are loaded into the CAM of a dynamic dataflow
computer. When all of the tagged operands of an instruc-
tion become available (that is, output from previous in-
structions and/or user input), the instruction is marked as
ready for execution by an execution unit.
This is known as activating or firing the instruction. Once
an instruction is completed by an execution unit, its out-
put data is send (with its tag) in the CAM. Any instruc-
tions that are dependent upon this particular datum (iden-
tified by its tag value) are then marked as ready for exe-
cution. In this way, subsequent instructions are executed
in proper order, avoiding race conditions. This order may
differ from the sequential order envisioned by the human
programmer, the programmed order.

7.2.4 Instructions

An instruction, along with its required data operands, is
transmitted to an execution unit as a packet, also called
an instruction token. Similarly, output data is transmit-
ted back to the CAM as a data token. The packetization
of instructions and results allows for parallel execution of
ready instructions on a large scale.
Dataflow networks deliver the instruction tokens to the
execution units and return the data tokens to the CAM. In
contrast to the conventional von Neumann architecture,
data tokens are not permanently stored in memory, rather
they are transient messages that only exist when in transit
to the instruction storage.

7.3 See also

• Dataflow

• Parallel Computing

• SISAL

• Systolic array

• Transport triggered architecture

7.4 References
[1] “HX300 Family of NPUs and Programmable Ethernet

Switches to the Fiber Access Market”, EN-Genius, June
18 2008.

[2] Manchester Dataflow Research Project, Research Re-
ports: Abstracts, September 1997

https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Parallel_Computing
https://en.wikipedia.org/wiki/SISAL
https://en.wikipedia.org/wiki/Systolic_array
https://en.wikipedia.org/wiki/Transport_triggered_architecture
http://www.en-genius.net/site/zones/networkZONE/product_reviews/netp_061608
http://www.en-genius.net/site/zones/networkZONE/product_reviews/netp_061608
http://www.en-genius.net/site/zones/networkZONE/product_reviews/netp_061608
http://cnc.cs.manchester.ac.uk/projects/dataflow.html
http://cnc.cs.manchester.ac.uk/projects/dataflow.html

Chapter 8

Systolic array

In parallel computer architectures, a systolic array is a
homogeneous network of tightly coupled Data Processing
Units (DPUs) called cells or nodes. Each node or DPU in-
dependently computes a partial result as a function of the
data received from its upstream neighbors, stores the re-
sult within itself and passes it downstream. Systolic arrays
were invented by Richard P. Brent and H.T. Kung, who
developed them to compute Greatest common divisors of
integers and polynomials. [1] They are sometimes classi-
fied as Multiple Instruction Single Data (MISD) archi-
tectures under Flynn’s Taxonomy, but this classification
is questionable because a strong argument can be made to
distinguish systolic arrays from any of Flynn’s four cate-
gories: SISD, SIMD, MISD, MIMD, as discussed later in
this article.
The parallel input data flows through a network of hard-
wired processor nodes, resembling the human brain
which combine, process, merge or sort the input data into
a derived result. Because the wave-like propagation of
data through a systolic array resembles the pulse of the
human circulatory system, the name systolic was coined
from medical terminology. The name is derived from
Systole (medicine) as an analogy to the regular pumping
of blood by the heart.

8.1 Applications

Systolic arrays are often hard-wired for specific oper-
ations, such as “multiply and accumulate”, to perform
massively parallel integration, convolution, correlation,
matrix multiplication or data sorting tasks.

8.2 Architecture

A systolic array typically consists of a large monolithic
network of primitive computing nodes which can be hard-
wired or software configured for a specific application.
The nodes are usually fixed and identical, while the inter-
connect is programmable. The more general wavefront
processors, by contrast, employ sophisticated and indi-
vidually programmable nodes which may or may not be

monolithic, depending on the array size and design pa-
rameters. The other distinction is that systolic arrays rely
on synchronous data transfers, while wavefront tend to
work asynchronously.
Unlike the more common Von Neumann architecture,
where program execution follows a script of instructions
stored in common memory, addressed and sequenced un-
der the control of the CPU's program counter (PC), the
individual nodes within a systolic array are triggered by
the arrival of new data and always process the data in ex-
actly the same way. The actual processing within each
node may be hard wired or block microcoded, in which
case the common node personality can be block pro-
grammable.
The systolic array paradigm with data-streams driven by
data counters, is the counterpart of the Von Neumann ar-
chitecture with instruction-stream driven by a program
counter. Because a systolic array usually sends and re-
ceives multiple data streams, and multiple data counters
are needed to generate these data streams, it supports data
parallelism.
The actual nodes can be simple and hardwired or consist
of more sophisticated units using micro code, which may
be block programmable.

8.3 Goals and benefits

A major benefit of systolic arrays is that all operand data
and partial results are stored within (passing through)
the processor array. There is no need to access exter-
nal buses, main memory or internal caches during each
operation as is the case with Von Neumann or Harvard
sequential machines. The sequential limits on parallel
performance dictated by Amdahl’s Law also do not ap-
ply in the same way, because data dependencies are im-
plicitly handled by the programmable node interconnect
and there are no sequential steps in managing the highly
parallel data flow.
Systolic arrays are therefore extremely good at artificial
intelligence, image processing, pattern recognition, com-
puter vision and other tasks which animal brains do so
particularly well. Wavefront processors in general can

34

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Computer_architectures
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Data_Processing_Unit
https://en.wikipedia.org/wiki/Data_Processing_Unit
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Richard_P._Brent
https://en.wikipedia.org/wiki/H.T._Kung
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/MISD
https://en.wikipedia.org/wiki/Flynn%2527s_Taxonomy
https://en.wikipedia.org/wiki/SISD
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/MISD
https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Merge_algorithm
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Systolic
https://en.wikipedia.org/wiki/Pulse
https://en.wikipedia.org/wiki/Systolic
https://en.wikipedia.org/wiki/Systole_(medicine)
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Monolithic_system
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Synchronous
https://en.wikipedia.org/wiki/Wavefront
https://en.wiktionary.org/wiki/asynchronous
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Counter_(digital)
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Amdahl%2527s_Law
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Parallel_computing

8.6. HISTORY 35

also be very good at machine learning by implementing
self configuring neural nets in hardware.

8.4 Classification controversy

While systolic arrays are officially classified as MISD,
their classification is somewhat problematic. Because the
input is typically a vector of independent values, the sys-
tolic array is definitely not SISD. Since these input values
are merged and combined into the result(s) and do not
maintain their independence as they would in a SIMD
vector processing unit, the array cannot be classified as
such. Consequently, the array cannot be classified as a
MIMD either, because MIMD can be viewed as a mere
collection of smaller SISD and SIMD machines.
Finally, because the data swarm is transformed as it
passes through the array from node to node, the multiple
nodes are not operating on the same data, which makes
the MISD classification a misnomer. The other reason
why a systolic array should not qualify as a MISD is the
same as the one which disqualifies it from the SISD cat-
egory: The input data is typically a vector not a single
data value, although one could argue that any given input
vector is a single data set.
In spite of all of the above, systolic arrays are often offered
as a classic example of MISD architecture in textbooks
on parallel computing and in the engineering class. If
the array is viewed from the outside as atomic it should
perhaps be classified as SFMuDMeR = Single Function,
Multiple Data, Merged Result(s).

8.5 Detailed description

A systolic array is composed of matrix-like rows of
data processing units called cells. Data processing units
(DPUs) are similar to central processing units (CPUs),
(except for the usual lack of a program counter,[2] since
operation is transport-triggered, i.e., by the arrival of a
data object). Each cell shares the information with its
neighbors immediately after processing. The systolic ar-
ray is often rectangular where data flows across the ar-
ray between neighbour DPUs, often with different data
flowing in different directions. The data streams entering
and leaving the ports of the array are generated by auto-
sequencing memory units, ASMs. Each ASM includes a
data counter. In embedded systems a data stream may
also be input from and/or output to an external source.
An example of a systolic algorithm might be designed for
matrix multiplication. One matrix is fed in a row at a time
from the top of the array and is passed down the array,
the other matrix is fed in a column at a time from the
left hand side of the array and passes from left to right.
Dummy values are then passed in until each processor has
seen one whole row and one whole column. At this point,

the result of the multiplication is stored in the array and
can now be output a row or a column at a time, flowing
down or across the array.[3]

Systolic arrays are arrays of DPUs which are connected
to a small number of nearest neighbour DPUs in a mesh-
like topology. DPUs perform a sequence of operations
on data that flows between them. Because the traditional
systolic array synthesis methods have been practiced by
algebraic algorithms, only uniform arrays with only lin-
ear pipes can be obtained, so that the architectures are
the same in all DPUs. The consequence is, that only
applications with regular data dependencies can be im-
plemented on classical systolic arrays. Like SIMD ma-
chines, clocked systolic arrays compute in “lock-step”
with each processor undertaking alternate compute | com-
municate phases. But systolic arrays with asynchronous
handshake between DPUs are called wavefront arrays.
One well-known systolic array is Carnegie Mellon Uni-
versity’s iWarp processor, which has been manufactured
by Intel. An iWarp system has a linear array processor
connected by data buses going in both directions.

8.6 History

Systolic arrays (< wavefront processors), were first de-
scribed by H. T. Kung and Charles E. Leiserson, who
published the first paper describing systolic arrays in
1978. However, the first machine known to have used
a similar technique was the Colossus Mark II in 1944.

8.7 Application example

An application Example - Polynomial Evaluation

Horner’s rule for evaluating a polynomial is:
y = (...(((an ∗ x + an−1) ∗ x + an−2) ∗ x + an−3) ∗
x+ ...+ a1) ∗ x+ a0

A linear systolic array in which the processors are ar-
ranged in pairs: one multiplies its input by x and passes
the result to the right, the next adds aj and passes the
result to the right:

8.8 Advantages and disadvantages

Pros

• Faster

• Scalable

Cons

• Expensive

https://en.wikipedia.org/wiki/MISD
https://en.wikipedia.org/wiki/SISD
https://en.wikipedia.org/wiki/Input_(computer_science)
https://en.wikipedia.org/wiki/Independence
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/SISD
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Swarm
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/MISD
https://en.wikipedia.org/wiki/Misnomer
https://en.wikipedia.org/wiki/SISD
https://en.wikipedia.org/wiki/MISD
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Atomic_operation
https://en.wikipedia.org/wiki/Data_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Transport_triggered_architecture
https://en.wikipedia.org/wiki/Data_processing_unit
https://en.wikipedia.org/wiki/Counter_(digital)
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/Data_processing_unit
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/IWarp
https://en.wikipedia.org/wiki/H._T._Kung
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Horner%2527s_rule

36 CHAPTER 8. SYSTOLIC ARRAY

• Highly specialized, custom hardware is required of-
ten application specific.

• Not widely implemented
• Limited code base of programs and algorithms.

8.9 Implementations

Cisco PXF network processor is internally organized as
systolic array.[4]

8.10 See also
• MISD - Multiple Instruction Single Data, Example:

Systolic Arrays
• iWarp - Systolic Array Computer, VLSI, In-

tel/CMU
• WARP (systolic array) - Systolic Array Computer,

GE/CMU

8.11 Notes
[1] http://www.eecs.harvard.edu/~{}htk/publication/

1984-ieeetoc-brent-kung.pdf

[2] The Paracel GeneMatcher series of systolic array proces-
sors do have a program counter. More complicated algo-
rithms are implemented as a series of simple steps, with
shifts specified in the instructions.

[3] Systolic Array Matrix Multiplication

[4] http://www.cisco.com/en/US/prod/collateral/routers/
ps133/prod_white_paper09186a008008902a.html

8.12 References
• H. T. Kung, C. E. Leiserson: Algorithms for VLSI

processor arrays; in: C. Mead, L. Conway (eds.): In-
troduction to VLSI Systems; Addison-Wesley, 1979

• S. Y. Kung: VLSI Array Processors; Prentice-Hall,
Inc., 1988

• N. Petkov: Systolic Parallel Processing; North Hol-
land Publishing Co, 1992

8.13 External links
• Instruction Systolic Array (ISA)

• 'A VLSI Architecture for Image Registration in Real
Time' (Based on systolic array), Vol. 15, September
2007

https://en.wikipedia.org/wiki/Cisco
https://en.wikipedia.org/wiki/MISD
https://en.wikipedia.org/wiki/IWarp
https://en.wikipedia.org/wiki/WARP_(systolic_array)
http://www.eecs.harvard.edu/~htk/publication/1984-ieeetoc-brent-kung.pdf
http://www.eecs.harvard.edu/~htk/publication/1984-ieeetoc-brent-kung.pdf
https://en.wikipedia.org/wiki/Program_counter
http://web.cecs.pdx.edu/~mperkows/temp/May22/0020.Matrix-multiplication-systolic.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps133/prod_white_paper09186a008008902a.html
http://www.cisco.com/en/US/prod/collateral/routers/ps133/prod_white_paper09186a008008902a.html
http://www.iti.fh-flensburg.de/lang/papers/isa/index.htm
http://ieeexplore.ieee.org/iel5/92/4292150/04292156.pdf
http://ieeexplore.ieee.org/iel5/92/4292150/04292156.pdf
http://ieeexplore.ieee.org/iel5/92/4292150/04292156.pdf

8.14. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 37

8.14 Text and image sources, contributors, and licenses

8.14.1 Text
• Computer architecture Source: https://en.wikipedia.org/wiki/Computer_architecture?oldid=718566729 Contributors: Robert Merkel,

Rjstott, Youssefsan, Toby Bartels, William Avery, Mudlock, Ray Van De Walker, SimonP, Hannes Hirzel, Stevertigo, Edward, RTC,
Michael Hardy, Mahjongg, Ixfd64, Dori, CesarB, Mdebets, Ahoerstemeier, Ideyal, Cameronc, Raul654, Robbot, Murray Langton, Jmabel,
JesseW, Iain.mcclatchie, Fabiform, Giftlite, Brouhaha, DavidCary, Harp, Lee J Haywood, VampWillow, Neilc, ConradPino, Togo~enwiki,
Rich Farmbrough, Guanabot, Pj.de.bruin, Dyl, ESkog, ZeroOne, Neko-chan, LeonardoGregianin, MPerel, Quaternion, Mdd, Honeycake,
Alansohn, Liao, Atlant, Pion, Hu, Bart133, Andrewmu, Wtmitchell, Velella, Brock, Cburnett, Bsadowski1, Oleg Alexandrov, Justinlebar,
Uncle G, Ruud Koot, JeremyA, Wikiklrsc, Dionyziz, Eyreland, Graham87, Kbdank71, Reisio, Quiddity, ABot, The wub, FlaBot, Gnikhil,
Margosbot~enwiki, BMF81, YurikBot, Salsia, Gaius Cornelius, Stassats, Danny31415, Nick, Matthiku, Aaron Schulz, DeadEyeArrow,
Tetracube, Neomagus00, LeonardoRob0t, Whaa?, GrinBot~enwiki, Dkasak, SpLoT, SmackBot, Kellen, Incnis Mrsi, Prodego, Gilliam,
Hmains, Jcarroll, Chris the speller, Kurykh, TimBentley, Thumperward, EncMstr, Newbyman, Nbarth, DHN-bot~enwiki, Dfletter, Can't
sleep, clown will eat me, RyanEberhart, David Morón, Frap, Q uant, AcidPenguin9873, JonHarder, Zvar, Edivorce, Allan McInnes, Sun-
darBot, Zachbenman, Krashlandon, Feradz, NongBot~enwiki, Robert Bond, InedibleHulk, Kvng, Shoeofdeath, Igoldste, Tawkerbot2, Sky-
Walker, CRGreathouse, Ahy1, Unixguy, Tuvas, Rdv, HenkeB, Michael B. Trausch, Xaariz, Tawkerbot4, Akhilesh043658647, Thijs!bot,
Kubanczyk, Renaissongsman, Marek69, Ideogram, Liquid-aim-bot, Prolog, Dylan Lake, Skarkkai, Res2216firestar, JAnDbot, Gopal1035,
The Transhumanist, Cmgomes, Bongwarrior, VoABot II, Nickmalik, CommonsDelinker, J.delanoy, Trusilver, Daufman, McSly, Plasticup,
L.W.C. Nirosh, Su-steveri, VolkovBot, Su-steve, Jigabooda, MagicBanana, TedColes, Miko3k, AlleborgoBot, Biasoli, Jimmi Hugh, Lo-
gan, Hazel77, TheStarman, ThorstenStaerk~enwiki, Fanatix, Chickendude1313, Meldor, Gerakibot, Mark w69, Jerryobject, Masgatotkaca,
Allmightyduck, Cépey, Vanished user kijsdion3i4jf, Kumioko, Svick, Denisarona, TheWILSE, Conniejlewis, ClueBot, Rilak, Czarkoff,
Excirial, Ykhwong, NuclearWarfare, Dmyersturnbull, Razorflame, Rrccflores, Gereon K., Xxray03, Dsimic, Addbot, Melab-1, AkhtaBot,
Leszek Jańczuk, Fluffernutter, Glane23, AnnaFrance, Favonian, Upulcranga, Tide rolls, Lightbot, Luckas-bot, Yobot, OrgasGirl, Fraggle81,
Nanju123, Amirobot, Pcap, Mmxx, AnomieBOT, Li3939108, Fahadsadah, Materialscientist, Citation bot, Tharindunisal, Groovenstein,
Joehms22, Shadowjams, TheAmplidude, Erik9bot, FrescoBot, Aubencheulobois, Alxeedo, HJ Mitchell, DrilBot, Pinethicket, Ramesh-
ngbot, Strenshon, Qazwsxedcrfv1, Merlion444, FoxBot, GlikD, SchreyP, ��, Vrenator, Quafios, DARTH SIDIOUS 2, Anurag golipkar,
RjwilmsiBot, EmausBot, Nuujinn, Racerx11, Primefac, Sohaib.mohd, Slawekb, Cogiati, Fæ, Alpha Quadrant, Elektrik Shoos, A930913,
Microprocessor Man, L Kensington, Donner60, Tot12, ClamDip, 28bot, ClueBot NG, CocuBot, Phonedigs, Satellizer, Nickspoon0, Va-
cation9, Delusion23, Zynwyx, Robin400, Widr, Jgowdy, Helpful Pixie Bot, HMSSolent, Aalomaim, Wbm1058, AvocatoBot, Neutral
current, Benzband, Dentalplanlisa, XIN3N, Orderkim, BattyBot, L8starter, Pratyya Ghosh, ChrisGualtieri, Codename Lisa, ZaferXYZ,
Phamnhatkhanh, Mahbubur-r-aaman, Faizan, Forgot to put name, Greengreengreenred, Wenzchen, Pokechu22, VirtualAssist, ScotXW,
G S Palmer, Olenyash, Abc 123 def 456, Trax support, Lich counter, Haosjaboeces, Esicam, Kylemanel, Bobby1234abcd, KasparBot,
Compassionate727, Boehm, SandmanKing42, Jpskycak, Srinivas blaze and Anonymous: 335

• Complex instruction set computing Source: https://en.wikipedia.org/wiki/Complex_instruction_set_computing?oldid=705073844 Con-
tributors: Graham Chapman, Mudlock, SimonP, Edward, Kwertii, Collabi, Furrykef, Carbuncle, Robbot, Murray Langton, Jason Quinn,
Nayuki, VampWillow, Neilc, Thincat, Karl-Henner, Rdnk, Urhixidur, DmitryKo, Chris Howard, Slady, Rich Farmbrough, Galain, Swiftly,
Dyl, Andrejj, CanisRufus, Joanjoc~enwiki, Pgquiles, WhiteTimberwolf, R. S. Shaw, Ejrrjs, James Foster, Jumbuck, Liao, Guy Harris,
Stephan Leeds, Kelly Martin, MattGiuca, MFH, Eyreland, Eras-mus, Palica, Kbdank71, Virtualphtn, Bubba73, FlaBot, Quuxplusone,
Chobot, Lion10, DVdm, Jpfagerback, RobotE, Arado, Gardar Rurak, Wiki alf, Ergbert, PS2pcGAMER, Bota47, Whaa?, Buybooks Mar-
ius, Rwwww, SmackBot, Prodego, Unyoyega, Eskimbot, DMTagatac, Chris the speller, Jprg1966, EncMstr, Sct72, Frap, JonHarder,
Cybercobra, Blazar, Vina-iwbot~enwiki, Flying Bishop, Optakeover, RekishiEJ, Wws, Cooljeanius, Nikto parcheesy, HenkeB, Davnor,
Saaya, Sopoforic, Xaariz, Skittleys, Thijs!bot, Epbr123, Fejesjoco, Alimentarywatson, JAnDbot, Deflective, Arifsaha, NapoliRoma,
Destynova, R'n'B, JonathonReinhart, DorganBot, UnicornTapestry, VolkovBot, EvanCarroll, Nxavar, Jackfork, Mike4ty4, PokeYourHead-
Off, Ethancleary, Bentogoa, Flyer22 Reborn, OKBot, Tesi1700, EoGuy, Rilak, Cassie Puma, Dthomsen8, Non-dropframe, TutterMouse,
ChenzwBot, Legobot, Luckas-bot, Yobot, OrgasGirl, Amirobot, Nyat, AnomieBOT, Materialscientist, Xqbot, RibotBOT, DaleDe, Cdleary,
Qbeep, Arndbergmann, Kallikanzarid, EmausBot, ZéroBot, Thine Antique Pen, SimDoc, Petrb, ClueBot NG, Tirppa~enwiki, Helpful Pixie
Bot, DBigXray, BattyBot, Lemnaminor, Nehasharma28, Comp.arch, Trixie05, AmirrezaN, Sofia Koutsouveli, Ilias.fotopoulos, Shiv51292,
Salmanmalik418 and Anonymous: 138

• Reduced instruction set computing Source: https://en.wikipedia.org/wiki/Reduced_instruction_set_computing?oldid=719038464 Con-
tributors: Damian Yerrick, Derek Ross, WojPob, Eloquence, Mav, Uriyan, Bryan Derksen, Koyaanis Qatsi, Drj, Andre Engels, Josh Grosse,
Nate Silva, Ray Van De Walker, Maury Markowitz, Fonzy, Hephaestos, Mrwojo, Edward, Michael Hardy, Kwertii, Modster, Pnm, Liftarn,
Lquilter, Stan Shebs, Snoyes, Pratyeka, Jiang, Jengod, Charles Matthews, Adam Bishop, Dcoetzee, Dmsar, Wik, Mrand, Furrykef, David
Shay, Wernher, Xyb, Finlay McWalter, RadicalBender, Jni, Phil Boswell, Murray Langton, Fredrik, Kristof vt, RedWolf, Donreed, Nurg,
Romanm, Phil webster, Stewartadcock, Hadal, Wikibot, Iain.mcclatchie, MikeCapone, Tea2min, David Gerard, Ancheta Wis, Giftlite,
DavidCary, Mintleaf~enwiki, Levin, Mark Richards, Nayuki, Solipsist, VampWillow, Bobblewik, Neilc, Knutux, Cliffster1, G3pro, Wehe,
AndrewTheLott, Moxfyre, Kate, Corti, Imroy, Rich Farmbrough, Guanabot, Pixel8, Dyl, Bender235, ZeroOne, Evice, Kaszeta, Kwamik-
agami, Parklandspanaway, Susvolans, Sietse Snel, Pgquiles, Thunderbrand, Smalljim, Cmdrjameson, R. S. Shaw, Koper, Maurreen, Speedy-
Gonsales, Trevj, Ianw, Zachlipton, Liao, Guy Harris, Nasukaren, Thaddeusw, Larowebr, Stephan Leeds, SimonW, A D Monroe III, Kelly
Martin, Simetrical, Thorpe, MattGiuca, Robert K S, ^demon, Ruud Koot, Dkanter, Scootey, MFH, GregorB, Eyreland, Eras-mus, OCNa-
tive, Alecv, Toussaint, Weevil, Palica, Bcaff05, Graham87, BD2412, Qwertyus, Kbdank71, Yurik, Josh Parris, JVz, Patrick Gill, Ligulem,
Bubba73, MarnetteD, Watcharakorn, Jamesmusik, StuartBrady, Lorkki, Toresbe, RAMChYLD, Quuxplusone, Chobot, DVdm, YurikBot,
Retodon8, Arado, SpuriousQ, Gaius Cornelius, TheMandarin, Rat144, DragonHawk, JulesH, Mikeblas, Beanyk, Dbfirs, DeadEyeArrow,
Bota47, Jasongagich, Vishwastengse, 6a4fe8aa039615ebd9ddb83d6acf9a1dc1b684f7, Dspradau, JoanneB, Marcosw, Kevin, Gesslein,
Paul D. Anderson, NeilN, Rwwww, GrinBot~enwiki, Drcwright, SmackBot, Henriok, Unyoyega, Clpo13, Hardyplants, Gjs238, Btwied,
Brianski, Betacommand, TimBentley, QTCaptain, Thumperward, PrimeHunter, EdgeOfEpsilon, The Appleton, Worthawholebean, Dro
Kulix, Frap, Christan80, JonHarder, Cybercobra, TheiNhibition, Rajrajmarley, Nutschig, Mattpat, Davipo, SashatoBot, Anss123, John-
catsoulis, Jay.slovak, Littleman TAMU, Shirifan, 16@r, Dicklyon, Optakeover, Flibble, MTSbot~enwiki, IvanLanin, UncleDouggie, Paul
Foxworthy, DavidConner, Raysonho, Wcooley, Xose.vazquez, Wws, Jesse Viviano, HenkeB, Saaya, Cambrant, Surturz, X201, Philippe,
Greg L, Radimvice, Rehnn83, Scepia, Mdz, Ptoboley, JAnDbot, Deflective, Davewho2, MER-C, RogierBrussee, VoABot II, Eclipsed
aurora, JNW, Nikevich, Cbturner46, HubmaN, EdBever, Wideshanks, ISC PB, Sbierwagen, GCFreak2, Jevansen, Remi0o, Orichalque,
Aninhumer, UnicornTapestry, VolkovBot, ICE77, TXiKiBoT, A4bot, Andrew.baine, T-bonham, JayC, Gazno, Plr4ever, ^demonBot2,

https://en.wikipedia.org/wiki/Computer_architecture?oldid=718566729
https://en.wikipedia.org/wiki/Complex_instruction_set_computing?oldid=705073844
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing?oldid=719038464

38 CHAPTER 8. SYSTOLIC ARRAY

Cybermaster~enwiki, Self-Perfection, Labalius, Milan Keršláger, VanishedUserABC, Senpai71, Mike4ty4, Logan, SieBot, Miremare, Jer-
ryobject, Bobanater, EnOreg, Jack1956, Hello71, Joey Eads, OKBot, MarkMLl, ClueBot, C xong, PipepBot, Micky750k, Sonu mangla,
Rilak, Matsuiny2004, Owengerig, Martyulrich, Weeniewhite, DumZiBoT, C. A. Russell, Fujimuji, Dr zepsuj~enwiki, Addbot, Avay-
aLive, Magus732, SpellingBot, Kman543210, Leszek Jańczuk, Download, ChenzwBot, AgadaUrbanit, Lightbot, Windward1, Legobot,
Luckas-bot, Yobot, Ptbotgourou, TaBOT-zerem, Wonderfl, AnomieBOT, Rubinbot, Shieldforyoureyes, Fromageestciel, MehrdadAfshari,
ArthurBot, Xqbot, Capricorn42, RibotBOT, Darkink, Surv1v4l1st, MetaNest, In2thats12, McHildinger, Jfmantis, Ale07, EmausBot, Wik-
itanvirBot, Autarchprinceps, Dewritech, Thecheesykid, Tksharpless, WikipedianD, Odysseus1479, Bomazi, ThePowerofX, ClueBot NG,
MelbourneStar, Robin400, Helpful Pixie Bot, Wbm1058, Goldenshimmer, Isacdaavid, BattyBot, The Illusive Man, Tagremover, Cibban,
Ducknish, Dexbot, Fishbone99, Jodosma, Alonduro, Comp.arch, R.tullyjr, Sofia Koutsouveli, Biblioworm, Pyrotle, Pink love 1998, No-
manAliArain, Mantraman701, MusikBot, We talk about PAE, Fmadd and Anonymous: 373

• History of general-purpose CPUs Source: https://en.wikipedia.org/wiki/History_of_general-purpose_CPUs?oldid=717079748 Contrib-
utors: RTC, Thue, David Edgar, DavidCary, Andreas Kaufmann, Smyth, Dyl, Smalljim, Chbarts, Liao, Guy Harris, Arthena, Dominic,
Woohookitty, Eyreland, Pmj, Mr.Unknown, StuartBrady, Rwwww, Bcbell, SmackBot, Chris the speller, QTCaptain, Frap, Harryboyles,
JHunterJ, Twas Now, Electron9, Widefox, IanOsgood, Michaeldim, Anaxial, R'n'B, J.delanoy, Public Menace, Osndok, Babedacus,
Ajfweb, TedColes, Andy Dingley, Flyer22 Reborn, Sfan00 IMG, Rilak, Czarkoff, Niceguyedc, Muhherfuhher, Dsimic, Ghettoblaster,
Lightbot, Jarble, Vincent stehle, Yobot, Fraggle81, AnomieBOT, Jim1138, Champlax, Smallman12q, FrescoBot, Bookalign, Dewritech,
Wikipelli, Dcirovic, ClueBot NG, Ernest3.141, Nucius, BG19bot, Fredo699, Kyzor, Mark Arsten, Hebert Peró, Featherwinglove, Archonof
and Anonymous: 56

• Processor design Source: https://en.wikipedia.org/wiki/Processor_design?oldid=713757757 Contributors: AxelBoldt, Derek Ross, Mav,
Ap, Aldie, Nate Silva, Mudlock, Ray Van De Walker, SimonP, Hannes Hirzel, Maury Markowitz, David spector, Rlee0001, Mintguy,
Edward, RTC, Oystein, Michael Hardy, Tim Starling, GABaker, Kwertii, Theanthrope, Alfio, Goatasaur, TUF-KAT, BigFatBuddha, Jiang,
Dmsar, Agent Smith, Andrewman327, Furrykef, David Shay, Thue, AnthonyQBachler, Murray Langton, Fredrik, Chris Roy, Tim Ivorson,
Iain.mcclatchie, Wjbeaty, Ancheta Wis, DavidCary, Captain Rotundo, Sunny256, DO'Neil, AlistairMcMillan, Solipsist, VampWillow,
C17GMaster, Beland, Hgfernan, Sam Hocevar, Pm215, Frankchn, Jkl, Zombiejesus, Tristan Schmelcher, Pixel8, Dyl, Clement Cherlin,
Sietse Snel, R. S. Shaw, Matt Britt, Cohesion, Liao, Guy Harris, YDZ, Jm51, ChrisJMoor, Kelly Martin, JeremyA, Trevor Andersen,
������, MC MasterChef, Kbdank71, Olivier Teuliere, Grammarbot, Ketiltrout, Angusmclellan, Drrngrvy, Intgr, Banaticus, YurikBot,
RobotE, Charles Gaudette, Stephenb, CarlHewitt, ZacBowling, JulesH, Panscient, Neomagus00, Benandorsqueaks, Benhoyt, SmackBot,
Blue520, Scifiintel, ActiveSelective, Patrickdepinguin, Kurykh, TimBentley, QTCaptain, Frap, AcidPenguin9873, JonHarder, LouScheffer,
UU, Judeh101, TechPurism, CRACK-A-BACK, Johncatsoulis, Ivan Kulkov, 16@r, Dicklyon, Waggers, Tawkerbot2, Mattbr, Andkore,
Driver01z, JacobBramley, AntiVandalBot, Gioto, JAnDbot, Arch dude, Lebroyl, GermanX, Gwern, LordAnubisBOT, Niks1024, Warut,
Su-steveri, VolkovBot, AlnoktaBOT, Jamelan, Nagy, Mipsseo, Yngvarr, Jerryobject, Enochhwang, Jdaloner, Miguel.mateo, Huku-chan,
Tuxa, PipepBot, Snigbrook, Rilak, PixelBot, Ianbeveridge, DumZiBoT, Augustojv, Zodon, Legobot, Luckas-bot, Yobot, AnomieBOT,
Citation bot, Obersachsebot, Agasta, Crzer07, FrescoBot, Jujutacular, Knoppson, Ripchip Bot, DSW-X-Groove, Dewritech, MonoALT,
Cogiati, Ego White Tray, ChuispastonBot, Ashish Gaikwad, Curb Chain, Northamerica1000, Meatsgains, Cyberbot II, ChrisGualtieri,
Tagremover, Kolarp, BurritoBazooka, ScotXW, Encrypto1, Laurengranath, Jaffacakemonster53, Bhattasamuel and Anonymous: 149

• Very long instruction word Source: https://en.wikipedia.org/wiki/Very_long_instruction_word?oldid=708767132 Contributors: Zun-
dark, The Anome, Youssefsan, Roadrunner, Rade Kutil, Maury Markowitz, Hephaestos, Michael Hardy, Furrykef, Jnc, Raul654, David-
Cary, VampWillow, Neilc, Chowbok, Phe, AlexanderWinston, Hellisp, Abdull, DmitryKo, Jason Carreiro, Perey, Real NC, Smyth,
Chub~enwiki, Dyl, CanisRufus, R. S. Shaw, Downchuck, Liao, Fg, Andrewpmk, Suruena, RJFJR, Mr z, AlbertCahalan~enwiki, Alecv,
Marudubshinki, Kbdank71, FlaBot, Fresheneesz, Anrie Nord, Personman, Gaius Cornelius, Jeff Carr, Zwobot, JLaTondre, SmackBot, Ni-
honjoe, Joshfisher, RichardYoung, QTCaptain, Thumperward, JonHarder, CTho, Treforsouthwell, Pizzadeliveryboy, Dbtfz, Darktemplar,
RekishiEJ, Zarex, Nczempin, Hasturkun, Thijs!bot, Nonagonal Spider, Geniac, Destynova, EagleFan, Calltech, Olsonist, Itegem, Kata-
laveno, Jrodor, Ajfweb, Mbinu, Zidonuke, Sleibson, Benoit.dinechin, Bichito, Mikeharris111, Sfan00 IMG, PixelBot, B.Zsolt, Dsimic,
Addbot, Mortense, Download, Sillyfolkboy, Lightbot, Legobot, Amirobot, Nallimbot, AnomieBOT, JohnnyHom, Xqbot, Capricorn42,
Wcoole, Psychlohexane, Maggyero, Mreftel, RjwilmsiBot, Dewritech, Serketan, Brainflakes, Trveller, Rezabot, Mdann52, Jimw338, Tagre-
mover, Jrmrjnck, Mark.piglet.chambers, ScotXW, 0xFEEDBACC, Satorit and Anonymous: 108

• Dataflow architecture Source: https://en.wikipedia.org/wiki/Dataflow_architecture?oldid=702700423Contributors: Sander~enwiki, Sam
Hocevar, Dyl, R. S. Shaw, Mdd, RJFJR, Firsfron, Perrella, Korg, Dleonard, Albedo, Sfnhltb, Rwwww, SmackBot, Chris the speller,
Bluebot, Can't sleep, clown will eat me, Frap, Racklever, Whpq, Radagast83, Brittannica, MHMcCabe, Krauss, Widefox, PhilKnight,
Olsonist, Panas, EmilioB, MaD70, PeterChubb, Skadron, EnOreg, MarkMLl, MarieLG, Addbot, Yobot, AnomieBOT, Kavanden, Xqbot,
Omnipaedista, DataflowTech, Gf uip, EmausBot, ChuispastonBot, Mizaoku, Mohamed-Ahmed-FG, Gauravsaxena81 and Anonymous: 21

• Systolic array Source: https://en.wikipedia.org/wiki/Systolic_array?oldid=715290443 Contributors: Michael Hardy, Kku, Dysprosia,
Doradus, Zoicon5, Jnc, Alexandre Cruz, Stewartadcock, Hadal, Ruakh, SpellBott, Lockeownzj00, Conte.carli, Dyl, Whosyourjudas,
Pearle, Cscott, BD2412, MartinRudat, Petri Krohn, SmackBot, Jcarroll, Optikos, TimBentley, Oli Filth, Letdorf, Frap, Cybercobra,
DMacks, Abraxa~enwiki, Electron9, Gah4, Tiggerjay, VolkovBot, RainierHa, Natg 19, Karl-tech, ParallelWolverine, Rainier3, Light-
mouse, Niceguyedc, Addbot, Nachimdr, Jarble, Yobot, Editor711, AnomieBOT, Nisheethg, DrilBot, MastiBot, Ales-76, Ajbonkoski,
Klbrain, Wbm1058, Frze, DPL bot, AmiArnab, Garfield Garfield, Socaacos and Anonymous: 43

8.14.2 Images
• File:Ambox_important.svg Source: https://upload.wikimedia.org/wikipedia/commons/b/b4/Ambox_important.svg License: Public do-

main Contributors: Own work, based off of Image:Ambox scales.svg Original artist: Dsmurat (talk · contribs)
• File:Commons-logo.svg Source: https://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg License: CC-BY-SA-3.0 Contribu-
tors: ? Original artist: ?

• File:Computer-aj_aj_ashton_01.svg Source: https://upload.wikimedia.org/wikipedia/commons/d/d7/Desktop_computer_clipart_-_
Yellow_theme.svg License: CC0 Contributors: https://openclipart.org/detail/105871/computeraj-aj-ashton-01 Original artist: AJ from
openclipart.org

• File:Edit-clear.svg Source: https://upload.wikimedia.org/wikipedia/en/f/f2/Edit-clear.svg License: Public domain Contributors: The
Tango! Desktop Project. Original artist:

https://en.wikipedia.org/wiki/History_of_general-purpose_CPUs?oldid=717079748
https://en.wikipedia.org/wiki/Processor_design?oldid=713757757
https://en.wikipedia.org/wiki/Very_long_instruction_word?oldid=708767132
https://en.wikipedia.org/wiki/Dataflow_architecture?oldid=702700423
https://en.wikipedia.org/wiki/Systolic_array?oldid=715290443
https://upload.wikimedia.org/wikipedia/commons/b/b4/Ambox_important.svg
//commons.wikimedia.org/wiki/File:Ambox_scales.svg
//commons.wikimedia.org/wiki/User:Dsmurat
//commons.wikimedia.org/wiki/User_talk:Dsmurat
//commons.wikimedia.org/wiki/Special:Contributions/Dsmurat
https://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg
https://upload.wikimedia.org/wikipedia/commons/d/d7/Desktop_computer_clipart_-_Yellow_theme.svg
https://upload.wikimedia.org/wikipedia/commons/d/d7/Desktop_computer_clipart_-_Yellow_theme.svg
https://openclipart.org/detail/105871/computeraj-aj-ashton-01
https://openclipart.org/user-detail/AJ
https://openclipart.org/
https://upload.wikimedia.org/wikipedia/en/f/f2/Edit-clear.svg
http://tango.freedesktop.org/Tango_Desktop_Project

8.14. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 39

The people from the Tango! project. And according to the meta-data in the file, specifically: “Andreas Nilsson, and Jakub Steiner (although
minimally).”

• File:IBMVacuumTubeModule.jpg Source: https://upload.wikimedia.org/wikipedia/commons/e/e7/IBMVacuumTubeModule.jpg Li-
cense: CC BY 2.0 Contributors: ? Original artist: ?

• File:IBM_PowerPC601_PPC601FD-080-2_top.jpg Source: https://upload.wikimedia.org/wikipedia/commons/7/7d/IBM_
PowerPC601_PPC601FD-080-2_top.jpg License: CC-BY-SA-3.0 Contributors: ? Original artist: ?

• File:Internet_map_1024.jpg Source: https://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg License: CC BY
2.5 Contributors: Originally from the English Wikipedia; description page is/was here. Original artist: The Opte Project

• File:KL_Intel_C8008-1.jpg Source: https://upload.wikimedia.org/wikipedia/commons/b/ba/KL_Intel_C8008-1.jpg License: GFDL
Contributors: CPU Collection Konstantin Lanzet
Camera: Canon EOS 400D Original artist: Konstantin Lanzet

• File:KL_Sun_UltraSparc.jpg Source: https://upload.wikimedia.org/wikipedia/commons/9/95/KL_Sun_UltraSparc.jpg License: CC-
BY-SA-3.0 Contributors: CPU collection Konstantin Lanzet Original artist: Konstantin Lanzet (with permission)

• File:MIPS_Architecture_(Pipelined).svg Source: https://upload.wikimedia.org/wikipedia/commons/e/ea/MIPS_Architecture_
%28Pipelined%29.svg License: Public domain Contributors: Own work Original artist: Inductiveload

• File:Mergefrom.svg Source: https://upload.wikimedia.org/wikipedia/commons/0/0f/Mergefrom.svg License: Public domain Contribu-
tors: ? Original artist: ?

• File:Nuvola_apps_ksim.png Source: https://upload.wikimedia.org/wikipedia/commons/8/8d/Nuvola_apps_ksim.png License: LGPL
Contributors: http://icon-king.com Original artist: David Vignoni / ICON KING

• File:Question_book-new.svg Source: https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: Cc-by-sa-3.0
Contributors:
Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:
Tkgd2007

• File:Text_document_with_red_question_mark.svg Source: https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_
with_red_question_mark.svg License: Public domain Contributors: Created by bdesham with Inkscape; based upon Text-x-generic.svg
from the Tango project. Original artist: Benjamin D. Esham (bdesham)

• File:Wikibooks-logo-en-noslogan.svg Source: https://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.
svg License: CC BY-SA 3.0 Contributors: Own work Original artist: User:Bastique, User:Ramac et al.

• File:Yunsup_Lee_holding_RISC_V_prototype_chip.jpg Source: https://upload.wikimedia.org/wikipedia/commons/7/7a/Yunsup_
Lee_holding_RISC_V_prototype_chip.jpg License: CC0 Contributors: Yunsup Lee holding RISC V prototype chip Original artist: Derrick
Coetzee (User:Dcoetzee)

8.14.3 Content license
• Creative Commons Attribution-Share Alike 3.0

http://tango.freedesktop.org/The_People
https://upload.wikimedia.org/wikipedia/commons/e/e7/IBMVacuumTubeModule.jpg
https://upload.wikimedia.org/wikipedia/commons/7/7d/IBM_PowerPC601_PPC601FD-080-2_top.jpg
https://upload.wikimedia.org/wikipedia/commons/7/7d/IBM_PowerPC601_PPC601FD-080-2_top.jpg
https://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg
//en.wikipedia.org/wiki/en:Image:Internet_map_1024.jpg
//commons.wikimedia.org/w/index.php?title=Barrett_Lyon&action=edit&redlink=1
https://upload.wikimedia.org/wikipedia/commons/b/ba/KL_Intel_C8008-1.jpg
https://upload.wikimedia.org/wikipedia/commons/9/95/KL_Sun_UltraSparc.jpg
https://upload.wikimedia.org/wikipedia/commons/e/ea/MIPS_Architecture_%2528Pipelined%2529.svg
https://upload.wikimedia.org/wikipedia/commons/e/ea/MIPS_Architecture_%2528Pipelined%2529.svg
//commons.wikimedia.org/wiki/User:Inductiveload
https://upload.wikimedia.org/wikipedia/commons/0/0f/Mergefrom.svg
https://upload.wikimedia.org/wikipedia/commons/8/8d/Nuvola_apps_ksim.png
http://icon-king.com/
https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg
//en.wikipedia.org/wiki/File:Question_book.png
//en.wikipedia.org/wiki/User:Equazcion
//en.wikipedia.org/wiki/User:Tkgd2007
https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
//commons.wikimedia.org/wiki/User:Bdesham
//commons.wikimedia.org/wiki/File:Text-x-generic.svg
//commons.wikimedia.org/wiki/User:Bdesham
https://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.svg
https://upload.wikimedia.org/wikipedia/commons/d/df/Wikibooks-logo-en-noslogan.svg
//commons.wikimedia.org/wiki/User:Bastique
//commons.wikimedia.org/wiki/User:Ramac
https://upload.wikimedia.org/wikipedia/commons/7/7a/Yunsup_Lee_holding_RISC_V_prototype_chip.jpg
https://upload.wikimedia.org/wikipedia/commons/7/7a/Yunsup_Lee_holding_RISC_V_prototype_chip.jpg
http://www.flickr.com/photos/dcoetzee/8694597164/
//commons.wikimedia.org/wiki/User:Dcoetzee
https://creativecommons.org/licenses/by-sa/3.0/

	Computer architecture
	History
	Subcategories
	Roles
	Definition
	Instruction set architecture
	Computer organization
	Implementation

	Design goals
	Performance
	Power consumption
	Shifts in market demand

	See also
	Notes
	References
	External links

	Complex instruction set computing
	Historical design context
	Incitements and benefits
	Design issues

	See also
	Notes
	References
	Further reading
	External links

	Reduced instruction set computing
	History and development
	Characteristics and design philosophy
	Instruction set philosophy
	Instruction format
	Hardware utilization

	Comparison to other architectures
	Use of RISC architectures
	Low end and mobile systems
	High end RISC and supercomputing

	See also
	References
	External links

	History of general-purpose CPUs
	1950s: early designs
	1960s: the computer revolution and CISC
	1970s: Large Scale Integration
	Early 1980s: the lessons of RISC
	Mid-to-late 1980s: exploiting instruction level parallelism
	1990 to today: looking forward
	VLIW and EPIC
	Multi-threading
	Multi-core
	Reconfigurable logic
	Open source processors
	Asynchronous CPUs
	Optical communication
	Optical processors
	Belt Machine Architecture

	Timeline of events
	See also
	References
	External links

	Processor design
	Details
	Micro-architectural concepts
	Research topics
	Performance analysis and benchmarking

	Markets
	General purpose computing
	Scientific computing
	Embedded design

	See also
	References

	Very long instruction word
	Overview
	Motivation
	Design
	History
	Implementations
	Backward compatibility
	See also
	References
	External links

	Dataflow architecture
	History
	Dataflow architecture topics
	Static and dynamic dataflow machines
	Compiler
	Programs
	Instructions

	See also
	References

	Systolic array
	Applications
	Architecture
	Goals and benefits
	Classification controversy
	Detailed description
	History
	Application example
	Advantages and disadvantages
	Implementations
	See also
	Notes
	References
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

