CT Sinusoidal Function (0B)

Continuous Time Sinusoidal Function

Copyright (c) 2009 - 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Complex Exponential

$$e^{+j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)$$

$$e^{+jt} = \cos(t) + j\sin(t) \qquad (\omega_0 = 1)$$

$$e^{-j\omega t} = \cos(\omega_0 t) - j\sin(\omega_0 t)$$

$$e^{-jt} = \cos(t) - j\sin(t) \qquad (\omega_0 = 1)$$

$Cos(\omega_0 t)$ Spectrum

$Sin(\omega_0 t)$ Spectrum

Complex Exponential Signals

Complex Exponential Signal

$$z(t) = A e^{j(\omega_0 t + \phi)}$$

$$\begin{cases} |z(t)| = A & \textit{real amplitude} \\ arg(z(t)) = \omega_0 t + \phi \end{cases}$$

Real Cosine Signal

$$x(t) = \Re\{A e^{j(\omega_0 t + \phi)}\}\$$
$$= A\cos(\omega_0 t + \phi)$$

$$z(t) = \cos(\omega_0 t + \phi) + j\sin(\omega_0 t + \phi)$$

$$= \cos(\omega_0 t + \phi) + j\sin(\omega_0 t + \phi - \pi/2)$$

$$\text{Always lag by } \frac{\pi}{2}$$

$$\sin(\theta) = \cos(\theta - \frac{\pi}{2})$$

Complex Exponential Signal

$$z(t) = A e^{j(\omega_0 t + \phi)}$$

$$\begin{cases} |z(t)| = A \text{ real amplitude} \\ arg(z(t)) = \omega_0 t + \phi \end{cases}$$

$$z(t) = A e^{j(\omega_0 t + \phi)}$$

$$= A e^{j\phi} e^{j\omega_0 t}$$

$$= X e^{j\omega_0 t}$$

$$X = A e^{j\phi}$$
 complex amplitude phasor

Rotating Phasor Notation

$$z(t) = X e^{j\omega_0 t}$$

$$\begin{cases} |z(t)| = |X| = A \text{ real amplitude} \\ arg(z(t)) = \omega_0 t + \phi \end{cases}$$

$$z(t) = \underline{X} \ \underline{e^{j\omega_0 t}}$$
 magnitude A rotating part with the angular speed of $\omega_0 \ (rad\, l\, sec)$

Spectrum

Real Single-tone Sinusoidal Signal

$$x(t) = A\cos(\omega_0 t + \phi)$$
$$= \Re\{Xe^{j\omega_0 t}\}$$

Real Multi-tone Sinusoidal Signal

$$x(t) = A_0 + \sum_{k=1}^{N} \cos(\omega_k t + \phi_k)$$

$$= X_0 + \Re\left\{\sum_{k=1}^{N} X_k e^{j\omega_k t}\right\} \quad (X_0 = A_0)$$

$$= X_0 + \sum_{k=1}^{N} \left\{\frac{X_k}{2} e^{+j\omega_k t} + \frac{X_k^*}{2} e^{-j\omega_k t}\right\}$$

$$X_k = A_k e^{j\phi_k}$$
 the phasor of angular frequency ω_k

Complex Exponential Signals

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] G. Beale, http://teal.gmu.edu/~gbeale/ece_220/fourier_series_02.html
- [4] C. Langton, http://www.complextoreal.com/chapters/fft1.pdf