Procedure Calls

Young W. Lim

2020-02-09 Tue

Young W. Lim Procedure Calls 2020-02-09 Tue 1/60

© Introduction
@ Based on
@ Stack Background
@ Transferring Control
@ Register Usage Conventions
o Call Example 1
o Call Example 2
e Call Example 3
@ Procedure Definition Example
@ Direct / Indirect Call Examples
@ Recursive Procedure Example

Young W. Lim Procedure Calls 2020-02-09 Tue 2/60

Based on

@ "Self-service Linux: Mastering the Art of Problem Determination",

Mark Wilding

© "Computer Architecture: A Programmer's Perspective", Bryant &
O'Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Procedure Calls 2020-02-09 Tue 3/60

Compling 32-bit program on 64-bit gcc

gcec -v

gcc -m32 t.c

sudo apt-get install gcc-multilib
sudo apt-get install g++-multilib
gcc-multilib

g++-multilib

gcc -m32

objdump -m 1386

Young W. Lim Procedure Calls 2020-02-09 Tue 4 /60

@ procedure calls
e passing procedure arguments
e storing return informations
e saving registers for later restoration
e local storage

@ stack frame:

o the portion of the stack
allocated for a single procedure call

Young W. Lim Procedure Calls 2020-02-09 Tue 5 /60

Descending full stack

@ Descending stack

e stack grows toward lower addresses
o push decreases %esp (growing stack)
e pop increases %esp (shrinking stack)

e Full stack
e contains a valid data at %esp address

Young W. Lim Procedure Calls 2020-02-09 Tue 6 /60

Stack frame pointers

e Frame Pointer (%ebp)

o the highest address of a stack frame
e bottom of a stack frame

e Stack Pointer (%esp)
o the lowest address of a stack frame
o top of a stack frame

@ read access via %ebp

e the stack pointer can move while the procedure is executing
e most information is accessed relative to the frame pointer

Young W. Lim Procedure Calls 2020-02-09 Tue 7 /60

Stack frame structures (1)

@ suppose procedure P (caller) calls procedure Q (callee)

the stack frame | - argument values to Q
for P (caller) - return address to P

the stack frame | - P's frame pointer (%ebp)

for Q (callee) - saved registers

- local variables

- temporaries

- Qs arguments to other functions

Young W. Lim Procedure Calls 2020-02-09 Tue 8 /60

Stack frame structures (2)

@ the stack frame for P (caller)

o the argument to Q are contained
within the stack frame for P

e the return address within P is pushed on the stack
forming the end of P's stack frame

@ the stack frame for Q (callee)

e starts with the saved value of
the frame pointer for P

o followed by copies of any other saved values of
registers (callee saved)

o local variables

Young W. Lim Procedure Calls

2020-02-09 Tue

9/60

Local variables

@ procedure Q also uses the stack for any local variables
that cannot be stored in registers

o when there are not enough registers
to hold all of the local data
e when the local variables are arrays or structures
and hence must be accessed by array or structure references
o the address operator & is applied to one of the local variables
and hence we must be able to generate an address for it

@ Q will use the stack frame for storing arguments
to any procedure it calls

Young W. Lim Procedure Calls 2020-02-09 Tue 10 /60

Caller's Viewpoint

H..G.H. AD.D.RES.S.
frame pointer (%ebp)
saved registers
local variables
temporaries
@ arguments for a funcion call to the callee
@ return address
@ stack pointer (%esp)
L.OW. AD.D.RES.S.

local variables > function arguments > return address

Young W. Lim Procedure Calls 2020-02-09 Tue 11 /60

Callee's Viewpoint

H.I.G.H. AD.D.RES.S.
@ %ebp+c: argument 2 from the caller
@ %ebp+8: argument 1 from the caller
o %ebp+4: return address of the caller
frame pointer (%ebp) : caller's %ebp stored
saved registers of the callee
local variables of the callee

temporaries of the callee
L.OW. AD.D.RESS.

function arguments > return address > caller's %ebp > local variables

Young W. Lim Procedure Calls 2020-02-09 Tue 12 /60

Stack Frames & Heap

------------------- H.I.G.H. A.D.D.R.E.S.S. —m-mmmmmmmmmmmmmmem
STACK (stack frame grows toward lower addresses)

stack Frame #1 VVVYV

;égék.éééﬁé-#é ;-Q.;.Q
..................... ;.;.;.;................................
;é;ék.fééié'#ﬁ ;.;.;.;

Young W. Lim Procedure Calls 2020-02-09 Tue 13 /60

Stack Frames & Memory Map

STACK (toward lower addresses)

HEAP (toward higher addresses)

Global Variables (BSS Segment)

Static Variables (Data Segment)

Machine Code (Text Segment)

Young W. Lim Procedure Calls 2020-02-09 Tue 14 /60

Procedure Instructions

Procedure Call call label direct call
call *operand indirect call
Procedure Return leave stack preparation
ret return from call

Young W. Lim Procedure Calls 2020-02-09 Tue 15 /60

Direct / indirect call / jump

e direct call / jump

e call label or jmp label
e indirect call / jump

e call #Yeax or jmp *jeax

uses the value in register %eax as the call/jump target
e call *(%eax) or jmp *jeax

reads the call/jump target from memory

using the value in %eax as the read address

call label direct call
call *operand indirect call
jmp label direct jump

jmp *operand indirect jump

Young W. Lim Procedure Calls 2020-02-09 Tue 16 / 60

Operand Addressing Modes

(Eb)

(Eb, Ei)
(, Ei, s)
(Eb, Ei, s)
(Ea)

(Eb, Ei)
(, Ei, s)
(Eb, Ei, s)

M [Imm
M[Imm
M [Imm
M[Imm
M [Imm
M[
M[
M[
M[

+ R[EDb]

+ R[Eb] +

+ R[Eb] +

R[Ea]

R[Eb] +

R[Eb] +

]

]
R[Ei]]
R[Ei]*s]
R[Ei]*s]
]

R[Ei]]
R[Ei]*s]
R[Ei]*s]

Absolute

Base + displace
Indexed

Scaled Indexed
Scaled Indexed
Indirect
Indexed

Scaled Indexed
Scaled Indexed

Young W. Lim

Procedure Calls

2020-02-09 Tue 17 / 60

call Instruction

@ call label : direct call (without memory reference)
@ call *operand : indirect call (with memory reference)

o operand address modes : Imm (Eb, Ei, s)
offset Imm (base reg Eb, index reg Ei, scale factor s)

@ return address: the address of the instruction
immediately following the call instruction

pushl return addr : push a return address

@ jmp procedure : jump to the start the called function

Young W. Lim Procedure Calls 2020-02-09 Tue 18 /60

ret Instruction

@ stack pointer must points to the return address

© popl return addr
pops the return address from the stack

@ jmp return addr
jump to the return address location

Young W. Lim Procedure Calls 2020-02-09 Tue 19 /60

leave Instruction

@ prepare the stack for returning

leave instruction

@ mov %ebp, %esp
set stack pointer to the beginning of callee's stack

@ pop %ebp
restore saved %ebp
set the stack pointer to the end of caller’s stack

Young W. Lim Procedure Calls 2020-02-09 Tue 20 /60

Return Value

@ to return the value of any function
that returns an integer or pointer
register jeax is used

Young W. Lim Procedure Calls 2020-02-09 Tue 21 /60

Procedure Instruction Summary

call push a return address pushl return addr
jump to a procedure jmp procedure

ret pops a retrun address popl return addr
jump to this address jmp return addr

leave set SP to BP movl %ebp, %esp
restore BP popl Y%ebp

Young W. Lim Procedure Calls 2020-02-09 Tue 22 /60

Setup and finish code in a procedure

call push a return address pushl return addr
jump to a procedure jmp procedure
setup save old %ebp pushl %ebp
set %esp to %ebp movl %esp, %ebp
function body function body
finish restore Y%esp movl %ebp, %esp
(leave) restore %ebp popl Yebp
ret pops a retrun address popl return addr

jump to this address jmp return addr

Young W. Lim Procedure Calls 2020-02-09 Tue 23 /60

IA32 conventions for register usage

@ the callee should not overwrite some registers
that the caller is going to use later

%eax Caller save register
%ebx Callee save register
%hecx Caller save register

Caller save Callee save

. registers registers
%edx Caller save register S & S &
— - heax ebx
hesi Callee save register - —
o as . hecx hesi
%edi Callee save register X o
hedx hedi

%ebp Frame Pointer
%esp Stack Pointer

Young W. Lim Procedure Calls 2020-02-09 Tue 24 /60

IA32 conventions for register usage

Caller %eax | the callee can overwrite
Save %ecx | these registers
g

Registers | %edx
Callee %ebx | the callee must

ave oesi | save these registers before usin
S % th gisters bef g
Registers | %edi | and restore them before returning

Young W. Lim Procedure Calls 2020-02-09 Tue 25 /60

Example 1 (1)

@ example code 1
int PO {
int x = £(Q);

Qx);
return x;

}

@ procedure P wants the value
it has computed for x = £()
to remain valid across the call to Q(x)
then to return x

Young W. Lim Procedure Calls 2020-02-09 Tue 26 / 60

Example 1 (2)

e if x is in a caller save register,
then P (the caller) must save the value x
before calling Q(x)
and restore x after Q returns

o if x is in a callee save register,
and Q must save the value x
before using the register
and restore x before returning

@ in either case,

e saving : pushing the register value onto the stack
e restoring : popping from the stack back to the register

Young W. Lim Procedure Calls 2020-02-09 Tue 27 /60

Example 2 (1)

@ example code 2

int P (int x)

{
int y = x*x; // y is computed here
int z = Q(y); // y is passed as an argument
return y + z; // y is accessed here also

}

@ P compute y=x*x before calling Q(y),
but it must also ensure that
the value of y is availiable
in return y+z after Q returns

Young W. Lim Procedure Calls 2020-02-09 Tue 28 /60

Example 2 (2)

@ two ways to ensure that the value of y is availiable
in return y+z after Q returns

@ Caller P saves y in its own stack frame
@ Callee Q saves y in a callee save register

@ most commonly, gcc uses the latter conventions,
since it tends to reduce the toal number of stack accesses

Young W. Lim Procedure Calls 2020-02-09 Tue 29 /60

Example 2 (3)

@ Caller P saves y in its own stack frame

o before calling Q(y),
P can store the value of y=x*x in its own stack frame

e when Q returns, in z=Q(y)
P can then retrieve the value of y from the stack

Young W. Lim Procedure Calls 2020-02-09 Tue 30 /60

Example 2 (4)

@ Callee Q saves y in a callee save register

e P can store the value of y=x*x in a callee save register

e if Q or any procdures called by Q wants to use this register,
it must save the register value in its stack frame
and restore the value before it returns.

e thus, when Q(y) returns to P,

the value of z=Q(y) will be in the callee save register,
o either because the register was never altered

or because it was saved and restored

Young W. Lim Procedure Calls 2020-02-09 Tue 31/60

GCC Example for a procedure call

@ the beginning part of an assembly code

pushl %edi ; callee save jedi
pushl %esi ; callee save Yjesi
pushl %ebx ; callee save J%ebx
movl 24(%ebp), %eax ; caller save %eax
imull 15(%ebp), %eax

leal O0(,%eax,4), %hecx ; caller save %ecx
addl 8(%ebp), %ecx

movl Y%ebx, %edx ; caller save %edx

o the callee save register (%edi, %esi, %ebx)

e to use the callee save registers in the procedure,
they should be save on its stack frame
and be restored before returning to the caller

o the caller save register (%eax, %ecx, %edx)

e these can be modified without saving nor restoring

Young W. Lim Procedure Calls 2020-02-09 Tue 32/60

Procedure definition example code

caller P source code callee Q source code

int PO { int Q(int *xp, int *yp) {
int al = 55; int x = *xp;
int a2 = 77; int y = *yp;
int sum = Q(&al, &a2);
int diff = al - a2; *Xp = V3
*Xyp = X3
return sum * diff; return x+y;
¥) b)

Young W. Lim Procedure Calls 2020-02-09 Tue 33 /60

Stack Frames contents for P & Q

before calling Q in the body of Q

Fommm e Fommm - | Fommm e tommm e |
%ebp -> | Y%ebp+0 | saved %ebp | | %ebp+24 | saved %ebp |
Fommm e s + Fommm e s +
| %ebp-4 | a2 | | %ebp+20 | a2 |
S —— s + e s +
| %ebp-8 | ai | | %ebp+i6 | ail |
Socmomonoe e + Soccomonoe e +
| %ebp-12 | &a2 | | %ebp+12 | &a2 |
dpocccmoooe dhmccooccoooos + dhoccoooooe dhmccsoccoosos +
%esp -> | %ebp-16 | &al | | %ebp+ 8 | &al |
e B | B B |
| | | | %ebp+ 4 | return adr |
Fommm e B | B B |
| | | %ebp -> | Yebp+ O | saved %ebp |
L Fom - | L B T |
| | | %esp -> | %ebp- 4 | saved %ebx |
Fommm e Fommm - |) Fommm e Fommm e | |

Young W. Lim Procedure Calls 2020-02-09 Tue 34 /60

Calling code of the caller P (1)

@ the stack frame for P includes storage for local variables
al and a2, at position %ebp-8 and %ebp-4

@ Q retrieves its arguments &al and &a2
from the stack frrame for P

caller Pcode P |

int PO { %ebp -> l %ebp+0 i saved Y%ebp i

e a1 - YR
int a2 = 77; *€Pp- a

. oo +

int sum = Q(&al, &a2); | %ebp-8 | al |
int diff = al - a2; geo= a

S oo +

return sum * diff; | etz | L I

) S oo +

Y %esp -> | %ebp-16 | &al |

R Fommm - |

v

Young W. Lim Procedure Calls 2020-02-09 Tue 35 /60

Calling code of the caller P (2)

calling Q

; compute &a2 (addr of %ebp-4)
leal -4(%ebp), %eax

; push &a2
pushl %eax

; compute &al (addr of Y%ebp-8)
leal -8(%ebp), %eax

; push &al
pushl %eax

; call Q() function
call Q

+—+ —+ — + — + — +

before calling Q

____________ |
saved %ebp |
____________ ax
a2 |
____________ s
al |
____________ s
&a2 |
____________ s
&al |

Young W. Lim

Procedure Calls

2020-02-09 Tue

36/ 60

Calling code of the caller P (3)

@ the local variable a1l and a2 must be stored on the stack
since the addresses &al and &a2 need to be computed
using leal instruction

@ local variables (a2, a1) and arguments (&a2, &al)
are pushed on the stack in the order

calling Q

leal -4(%ebp), %eax

compute &a2 (the address value of Y%ebp-4)

pushl %eax ; push &a2
leal -8(%ebp), %eax ; compute &al (the address value of %ebp-8)
pushl %eax ; push &al

5

call Q call Q() function

Young W. Lim Procedure Calls 2020-02-09 Tue 37 /60

Function code of the callee Q

the compiled code for a function has 3 parts
@ the setup part
the stack frame is initialized

@ the body part
the actual computation of the procedure is performed

© the finish part
the stack state is restored and the procedure returns

Young W. Lim Procedure Calls 2020-02-09 Tue 38 /60

Setup code for the callee Q

Setup code for the callee Q Stack frame of the callee Q

Q: R, o |
; hebp : frame pointer of P | %ebp+24 | saved %ebp |
Pocommmmas N +

; save this old Y%ebp | %ebp+20 | a2 |
pushl %ebp oo _ oo +
| %ebp+16 | a1 |

; set %ebp as a new frame pointer oo [+
movl Yesp, %ebp | %ebp+12 | &a2 |
L . R +

; save %ebx | %ebp+ 8 | &al |
pushl %ebx oo oo |
| %ebp+ 4 | return adr |

0 . . Fommm - tommmm e |

@ %ebx is used in the callee Q Yebp -> | %ebpt 0 | saved %ebp |
@ %ebx is a callee save register oo e '
. hesp -> | Yebp- 4 | saved Yebx |

@ %ebx is pushed on the stack fommmmmeae T [

v

Young W. Lim Procedure Calls 2020-02-09 Tue 39/60

Body code for the callee Q (1)

Body Code for Q Stack frame of the callee Q

3 %edx holds xp e R |
movl 8(Jebp), %edx | %ebp+24 | saved %ebp |
8 %ecx holds yp T oo +
movl 12(%ebp), %ecx | %ebp+20 | a2 |
g %ebx holds x e e +
movl (%edx), %ebx | %ebp+16 | al |
5 %eax holds y PR o +
movl (%ecx), %eax | %ebp+12 | &a2 |
 ———— S ——— +

5 assign y to *xp | %ebp+ 8 | &al [
movl hecx, (hedx) Fommmm R |
H assign x to *yp | %ebp+ 4 | return adr |
movl %ebx, (%hecx) U [P |
H %eax holds x+y %ebp -> | %ebpt+ O | saved %ebp |
addl %ebx, Jeax e P |
%hesp -> | %ebp- 4 | saved Jebx |

@ return value is at %eax) — i—— |

Young W. Lim Procedure Calls 2020-02-09 Tue 40 /60

Body code for the callee Q (2)

Body Code for Q

%edx holds xp
movl 8(%ebp) , %edx
%ecx holds yp

movl 12(ebp), Yecx callee Q source code
R %ebx holds x

>

movl (%edx), %ebx int Q(int *xp, int *yp) {
5 %eax holds y int x = *xp;

movl (%hecx), %heax int y = *yp;

5 assign y to *xp *Xp = V;

movl Y%ecx, (%hedx) Xyp = X;

H assign x to *yp return x+y;

movl %ebx, (%ecx) }

B %eax holds x+y
addl Jebx, ‘heax

@ return value is at %eax

Young W. Lim Procedure Calls 2020-02-09 Tue 41 /60

Finish code for the callee Q

Stack frame of the callee Q

B B |

S | %ebp+24 | saved %ebp |
Finish code for Q , leopret | saved heb -
8 restore J%ebx | %ebp+20 | a2 |
popl %ebx romomemass N +
| %ebp+16 | ai |

B restore %esp o N — +
movl %ebp, %esp | %ebp+12 | &a2 |
Poccomomss Srecesmssssons +

8 restore Jebp | %ebp+ 8 | &al |
popl %ebp fommmmmm=e oo |
| %ebp+ 4 | return adr |

H return to the caller T o |
ret '} %ebp -> | Jebp+ O | saved %ebp |
s B |

%hesp -> | Y%ebp- 4 | saved %ebx |

B B |

Young W. Lim Procedure Calls 2020-02-09 Tue 42 /60

Source codes (1)

int direct() {
int i, b = 0;
for (i = 0; i < INT_MAX; ++i) {
b = foo(b);
i

return b;

}

direct source code indirect source code

int indirect(int (*fn) (int)) {
int i, b = 0;

for (i = 0; i < INT_MAX; ++i) {
b = fn(b);
}

return b;

}

https://gist.github.com/rianhunter/Obe8dc116b120adbfdd4#file-call_overhead-c-L17

Young W. Lim

Procedure Calls

2020-02-09 Tue

43 /60

Source codes (2)

main procedure

int main(int argc, char *argv[]) {

foo source code if (argc == 2 &k argv[11[0] == ’d’) {
int foo(int a) { return direct();
return a; ¥
} else {
return indirect(&foo);
T

}

https://gist.github.com/rianhunter/Obe8dc116b120ad5fdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 44 /60

Direct / indirect call comparison

indirect call
e foo(int a) @ int (*fn) (int)
@b = foo(b); b = fn(b);
@ call _foo @ call *jesi
o call label o call *operand

https://gist.github.com/rianhunter/0be8dc116b120ad5fdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 45 / 60

Assembly codes (1)

diwces sl indirect assembly

_indirect_version:
pushl Yesi
pushl %ebx
xorl Yheax, heax
movl $2147483647, %ebx
subl $20, %esp
movl 32(%esp), hesi

_foo:
movl 4(%esp), %heax
ret

_direct_version:
subl $4, Yesp
movl $2147483647, ‘hedx

xorl Yheax, heax Le:
. ° > movl %eax, (%esp)
. . . call *jesi
movl heax, (lesp) subl $1, “ebx
call _foo ine L8 >
S et $20, Y%esp
jne L3 Totoes
addl $4, Yesp popi ;eb%
ot pop hesi
o ret

https://gist.github.com/rianhunter/Obe8dc116b120adbfdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 46 / 60

Assembly codes (2)

: direct assembly
direct source

foo:
int foo(int a) { movl 4(hesp), ‘heax
return a; ret
¥
_direct_version:
int direct() { subl $4, %esp
int i, b = 0; movl $2147483647, %edx
xorl Yeax, heax
for (i = 0; i < INT_MAX; ++i) { L3:
b = foo(b); movl %heax, (%esp)
T call _foo
subl $1, %edx
return b; jne L3
}) addl $4, Yesp
ret

https://gist.github.com/rianhunter/0be8dc116b120ad5fdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 47 /60

Assembly codes (3)

indirect assembly

_indirect_version:
pushl Yesi
xorl fheax, heax
movl $2147483647, %ebx
subl $20, %esp
movl 32(%esp), hesi

int indirect(int (*fn) (int)) {
int i, b = 0;

for (i = 0; i < INT_MAX; ++i) {

b = fn(b); L8
) movl %eax, (%esp)
call *jesi
return b; subl 8L, hebx
) jne L8
4 addl $20, Yesp

popl %ebx
popl hesi
ret

https://gist.github.com/rianhunter/Obe8dc116b120adbfdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 48 / 60

foo procedure assembly code

foo assembly code

foo:

movl 4(%esp), heax
ret

movl 4(%esp), %eax copy argument from stack at %esp+4 into %eax
to store the return value from a function

https://gist.github.com/rianhunter/Obe8dc116b120ad5fdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 49 /60

direct procedure assembly code

direct assembly code (b)

direct assembly code (a)

L3: movl heax, (fesp)

_direct_version: call _foo
subl $4, Yesp subl $1, %edx
movl $2147483647, ’edx jne L3
xorl fheax, heax addl $4, Yesp
ret
subl $4, Y%esp allocate 4 bytes of stack space

to hold the argument when we call foo()
movl $2147483647, ‘%edx %edx is the i’ variable of the for loop
Initialized to MAX INT

xorl Yeax, heax %eax is the 'b’ variable
xor will set eax to 0.
movl %eax, (Yesp) copy 'b’ onto the stack space reserved

to hold the argument for foo().

Young W. Lim Procedure Calls 2020-02-09 Tue 50 /60

indirect procedure assembly code

indirect assembly code (b)

indirect assembly code (a)

_indirect_version: L8: movl A:—zaxf (Yhesp)

pushl Y%esi call *esi

pushl Y%ebx subl $1, %ebx
xorl Y%eax, %eax jne L8)

movl $2147483647, %ebx addl ?20: %hesp
subl $20, %esp popl o/,eb}.c

movl 32(%esp), %esi popl hesi

ret

pushl Yesi, pushl Y%ebx push %esi and %ebx on to the stack
xorl %eax, ‘heax %eax is the 'b’ variable
xor will set eax to 0.
movl $2147483647, ‘%hedx %edx is the 'i" variable of the for loop
Initialized to MAX INT

subl $20, Yesp allocate 20 bytes of stack space
to hold the argument when we call foo()
movl 32(%esp), hesi M[%esp+32] -> %esi

Young W. Lim Procedure Calls 2020-02-09 Tue 51 /60

Direct and indirect call examples (6)

o differences between the direct and indirect versions

e the direct version uses 3 instructions to setup
before it gets to the for-loop.
the indirect version uses 6.
e the loop itself is 4 instructions in both cases,
but the direct version uses 3 registers (eax, esp and edx)
while the indirect version uses 4 (eax, esp, esi, and ebx).
If there were no more registers free,
the indirect version would have to add extra code
to move variables on and off the stack.

https://gist.github.com/rianhunter/0Obe8dc116b120ad5fdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 52 /60

Direct and indirect call examples (7)

@ The extra setup overhead doesn't matter much,
unless the loop count is tiny.

@ But the extra register use does matter.

@ In real code, register contention is often a problem -
it is more of a problem on x86 than instruction sets
with more registers, but | don't think we should
ignore this cost in any case.

https://gist.github.com/rianhunter/0Obe8dc116b120ad5fdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 53 /60

Direct and indirect call examples

@ To investigate the cost, the code is changed
to use additional copies of foo().

@ timing the resulting executable, the indirect version is 3.4x slower.

direct procedure ver 2 indirect procedure ver 2

int foo(int a) { return a; } . . .
int indirect_version

(int (*fn) (int),
int (*fn2) (int),
int (*fn3) (int)) {

int i, b = 0;

int bar(int a) { return a; }

int baz(int a) { return a; }

int direct_version() { for (i = 0; i < INT_MAX; ++i) {

int i, b = 0;
b = fn(b) + fn2(b) + fn3(b);
for (i = 0; i < INT_MAX; ++i) { } n(b) n2(b))

b = foo(b) + bar(b) + baz(b);
}
return b;

¥ ¥ o

v

https://gist.github.com/rianhunter/Obe8dc116b120adbfdd4#file-call_overhead-c-L17

return b;

Young W. Lim Procedure Calls 2020-02-09 Tue 54 /60

Direct and indirect call examples (9)

in procedure ver 2

int main(int argc, char *argv[]) {
if (argec == 2 && argv[1]1[0] == ’d’) {
return direct_version();
T
else {
return indirect_version(&foo, &bar, &baz);

}

}

v

https://gist.github.com/rianhunter/Obe8dc116b120ad5fdd4#file-call_overhead-c-L17

Young W. Lim Procedure Calls 2020-02-09 Tue 55 /60

Fibonacci Sequence

int fibo(int n) { e multiple outstanding calls

int prev, val; @ each call has its own local
if (n <= 2) return 1; variables

prev = fibo(n-2); I ted | h th
val = fibo(n.1): e allocated only when the
return prev + val; procedure is called

o deallocated when it returns

Young W. Lim Procedure Calls 2020-02-09 Tue 56 / 60

Stack Frames for the caller and the callee

%ebp+8 : n
%ebp+4 : return address

%ebp+8 :
ebpt8 : n %ebp+0 : saved %ebp

%ebp+4 : return address
%ebp+0 : saved J%ebp

o %ebp-20: saved Yesi
%ebp-20: saved %esi hebp-24: saved %ebp
%ebp-24: saved J%ebp T

after initial setup %ebp-40: n-2

just before the 1st recusive call

Young W. Lim Procedure Calls 2020-02-09 Tue 57 /60

Setup Code for fibo()

fibo:
pushl %ebp
movl Y%esp, %ebp
subl $16, Yesp
pushl %esi
pushl 7%ebx

Set up code

%ebp: frame pointer
alloc 16 bytes on stack
save %esi (-20)

save %ebx (-24)

Young W. Lim Procedure Calls 2020-02-09 Tue 58 /60

Body Code for fibo()

movl 8(%ebp),

cmpl $2,
jle 124
addl $-12,

leal -2(%ebx),
pushl Yeax

call fibo
movl Y%eax,
addl $-12,

leal -1(%ebx),
pushl Yeax

call fibo
addl Yesi,
jmp .L25

Young W. Lim

%ebx
%ebx

hesp

%heax

%hesi
%hesp
%heax

fheax

Procedure Calls

2020-02-09 Tue

59 / 60

Finish Code for Q()

popl %ebx restore J%ebx
movl %ebp, %esp restore jesp
popl ’ebp restore Y%ebp
ret return to the caller

Young W. Lim Procedure Calls 2020-02-09 Tue 60 / 60

	Introduction
	Based on
	Stack Background
	Transferring Control
	Register Usage Conventions
	Call Example 1
	Call Example 2
	Call Example 3
	Procedure Definition Example
	Direct / Indirect Call Examples
	Recursive Procedure Example

