
Young Won Lim
2/20/18

Polymorphism – Overview (1A)

Young Won Lim
2/20/18

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Polymorphism -
Overview (1A) 3 Young Won Lim

2/20/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Polymorphism -
Overview (1A) 4 Young Won Lim

2/20/18

General Monad - MonadPlus

Haskell's Control.Monad module defines a typeclass, MonadPlus,

that enables abstract the common pattern eliminating case expressions.

class Monad m => MonadPlus m where

 mzero :: m a

 mplus :: m a -> m a -> m a

instance MonadPlus [] where

 mzero = []

 Mplus = (++)

instance MonadPlus Maybe where

 mzero = Nothing

 Nothing `mplus` ys = ys

 xs `mplus` _ = xs

http://book.realworldhaskell.org/read/programming-with-monads.html

class (Monad m) => MonadPlus m where

Polymorphism -
Overview (1A) 5 Young Won Lim

2/20/18

General Monad - MonadPlus Laws

 The class MonadPlus is used for monads that have a zero element and a plus operation:

class (Monad m) => MonadPlus m where

 mzero :: m a

 mplus :: m a -> m a -> m a

m >>= \x -> mzero = mzero

mzero >>= m = mzero

m `mplus` mplus = m

mplus `mplus` m = m

The mplus operator is ordinary list concatenation in the list monad.

http://book.realworldhaskell.org/read/programming-with-monads.html

The zero element laws:

The laws governing the mplus operator

For lists, the zero value is [], the empty list.

The I/O monad has no zero element and

is not a member of this class.

Polymorphism -
Overview (1A) 6 Young Won Lim

2/20/18

Vector, Matrix : addition and subtraction

data Vector = Vector Int Int deriving (Eq, Show)

data Matrix = Matrix Vector Vector deriving (Eq, Show)

overloading Haskell's Num class:

instance Num Vector where

 Vector a1 b1 + Vector a2 b2 = Vector (a1+a2) (b1+b2)

 Vector a1 b1 - Vector a2 b2 = Vector (a1-a2) (b1-b2)

 {- ... and so on ... -}

instance Num Matrix where

 Matrix a1 b1 + Matrix a2 b2 = Matrix (a1+a2) (b1+b2)

 Matrix a1 b1 - Matrix a2 b2 = Matrix (a1-a2) (b1-b2)

 {- ... and so on ... -}

https://wiki.haskell.org/Functional_dependencies

Polymorphism -
Overview (1A) 7 Young Won Lim

2/20/18

Vector, Matrix : multiplication

need a multiplication function which overloads to different types:

(*) :: Matrix -> Matrix -> Matrix

(*) :: Matrix -> Vector -> Vector

(*) :: Matrix -> Int -> Matrix

(*) :: Int -> Matrix -> Matrix

{- ... and so on ... -}

class Mult a b c where

 (*) :: a -> b -> c

instance Mult Matrix Matrix Matrix where

 {- ... -}

instance Mult Matrix Vector Vector where

 {- ... -}

https://wiki.haskell.org/Functional_dependencies

Too many cumbersome

{- ... and so on ... -}

Polymorphism -
Overview (1A) 8 Young Won Lim

2/20/18

Vector, Matrix : the result type

even a simple expression has an ambiguous type

unless you supply an additional type declaration on the intermediate expression:

m1, m2, m3 :: Matrix

(m1 * m2) * m3 -- type error;

(m1 * m2) :: Matrix * m3 -- this is ok

instance Mult Matrix Matrix (Maybe Char) where

 {- whatever -}

The problem is that

the third shouldn't really be a free type variable.

When you know the types of multiplicand and multiplier,

the result type should be determined

by the types of those things to be multiplied

https://wiki.haskell.org/Functional_dependencies

type of (m1*m2) is ambiguous

Polymorphism -
Overview (1A) 9 Young Won Lim

2/20/18

Functional Dependency (fundep)

class class Mult | a b -> c where

 (*) :: a -> b -> c

c is uniquely determined from a and b

.

Fundeps are not standard Haskell 98.

(Nor are multi-parameter type classes, for that matter.)

They are, however, supported at least in GHC and Hugs

and will almost certainly end up in Haskell'.

https://wiki.haskell.org/Functional_dependencies

Polymorphism -
Overview (1A) 10 Young Won Lim

2/20/18

class Monad m => MonadState s m | m -> s where …

functional dependencies

to constrain the parameters of type classes. s and m

s can be determined from m,

so that s can be the return type

but m can not be the return type

in a multi-parameter type class,

one of the parameters can be determined from the others,

so that the parameter determined by the others can be the return type

but none of the argument types of some of the methods.

https://stackoverflow.com/questions/23149318/get-put-and-state-in-monadstate

Functional Dependency | (vertical bar)

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 fail :: String -> m a

m a

Maybe a

IO a

ST a

State s a

m → s

State s → s

Young Won Lim
2/20/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

