
Pointers

Young W. Lim

2020-11-06 Fri

Young W. Lim Pointers 2020-11-06 Fri 1 / 22

Outline

1 Introduction
References
Pointer Background

Young W. Lim Pointers 2020-11-06 Fri 2 / 22

Based on

"Self-service Linux: Mastering the Art of Problem Determination", Mark
Wilding
"Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Pointers 2020-11-06 Fri 3 / 22

0. Pointer

every pointer has a type
every pointer has a value
pointers are created with the & operator
pointers are dereferenced with the * operator
arrays and pointers are closely related
pointers can also point to functions

Young W. Lim Pointers 2020-11-06 Fri 4 / 22

1. Pointer Type

Every pointer has a type
the data (object) type which a pointer points
pointer type : int *, double *
object tyupe : int, double
pointers : p, q
if the object type is T,
then the pointer type is *T
void * : a generic pointer
malloc returns void * pointer
must be type casted

Young W. Lim Pointers 2020-11-06 Fri 5 / 22

2. Pointer Value

the value is an address of the object
which the pointer points to
NULL value : the pointer does not point to anywhere

Young W. Lim Pointers 2020-11-06 Fri 6 / 22

3. Pointer Creation with &

& operator can be applied to any lvalue c expression
which can appear on the left side of an asignment
variables
the elements of structures, unions, and arrays
&a, &A[i], &S.i, &U->m

Young W. Lim Pointers 2020-11-06 Fri 7 / 22

4. Pointer Dereference with *

* operator returns a value of the object
which the pointer points to

int * ip[2];
...
* ip
** ip

union uni { int t; char v; } u;
union uni *up;
...
up->v

Young W. Lim Pointers 2020-11-06 Fri 8 / 22

5. Arrays and Pointers

the name of an array can be referenced as a pointer variable
but it is not lvalue and cannot be changed

a[3]

*(a+3)

Young W. Lim Pointers 2020-11-06 Fri 9 / 22

6. Function Pointers (1)

a powerful capability for storing and passing refereces to code
which can be invoked in some other part of the program

void fun (int *xp) {
void (*f) (int *) = fun;

...
if (--(*xp)>0) f(xp); // recursive call

}

Young W. Lim Pointers 2020-11-06 Fri 10 / 22

6. Function Pointers (2)

08048414 <fun>:
08048414: 55 push %ebp
08048415: 89 e5 mov %esp, %ebp
08048417: 83 ec 1c sub $0x1c, %esp
08048417: 57 push %edi

Young W. Lim Pointers 2020-11-06 Fri 11 / 22

6. Function Pointers (3)

it helps to read it starting form the inside (starting with f)
and working outward
thus, we see that f is a pointer, as indicated by (*f)
it is a pointer to a function that has a single int * as
an argument as indicated by (*f)(int *)
finally we see that it is a pointer to a function
that takes an int * as an argument and returns void

void (*f) (int *);

void *f(int *);

(void *) f(int *);

Young W. Lim Pointers 2020-11-06 Fri 12 / 22

Pointer example code (1)

struct str { // example structures
int t;
char v;

}

union uni { // example unions
int t;
char v;

}

int g = 15;

Young W. Lim Pointers 2020-11-06 Fri 13 / 22

Pointer example code (2)

void fun(int* xp)
{

void (*f)(int *) = fun; // f is a function pointer

// allocation structure on stack
struct str s = {1, ’a’}; // structure initialization

// allocation union from heap
union uni *up = (union uni *) malloc(sizeof(union uni));

// locally declared array
int *ip[2] = {xp, &g};

Young W. Lim Pointers 2020-11-06 Fri 14 / 22

Pointer example code (3)

up->v = s.v+1;

printf("ip = %p, *ip = %p, **ip = %d \n",
ip, *ip, **ip);

printf("ip+1 = %p, ip[1] = %p, *ip[1] = %d \n",
ip+1, ip[1], *ip[1]);

printf("&s.v = %p s.v = ’%c’\n", &s.v, s.v);

printf("&up-> = %p, up->v = ’$c’\n" &up->v, up->v);

printf("f = %p \n", f);

if (--(*xp) > 0) f(xp); // recursive call of fun
}

Young W. Lim Pointers 2020-11-06 Fri 15 / 22

Pointer example code (4)

int test()
{

int x = 2;

fun(&x);
return x;

}

Young W. Lim Pointers 2020-11-06 Fri 16 / 22

Pointer example code (5)

ip = 0xbfffefa8, *ip = 0xbfffefe4, **ip = 2
ip+1 = 0xbfffefac, ip[1] = 0x804965c, *ip[1] = 15
&s.v = 0xbfffefb4, s.v = ’a’
&up->v = 08049760, up->v = ’b’
f = 0x804814
ip = 0xbffef68, *ip = 0xbfffefe4, **ip = 1
ip+1 = 0xbfffef6c ip[1] = 0x804965c, *ip[1] = 15
&s.v = 0xbfffef74, s.v = ’a’
&up->v = 0x8049770, up->v = ’b’
f = 0x8048414

Young W. Lim Pointers 2020-11-06 Fri 17 / 22

Pointer example code (6)

ip[0] = xp, *xp = x = 2
ip[1] = &g, g=15
s in stack frame
up points to area in heap
f points to code for fun
ip in new frame, x = 1
ip[1] same as before
s in new frame
up points to new area in heap
f points to code for fun

Young W. Lim Pointers 2020-11-06 Fri 18 / 22

Pointer example code (7)

the function is executed twice

1st by the direct call from test
2nd by the indirect, recursive call

those starting with 0xbfffef point to
locations on the stack, while the rest are
part of the global storage (0x804965c),
part of the executable code (0x8048414), or
locations on the heap (0x8049760 and 0x8049770)

Young W. Lim Pointers 2020-11-06 Fri 19 / 22

Pointer example code (8)

array ip is instantiated twice
once for each call to fun

the second value (0xbfffef68) i smaller than
the first value (0xbfffefa8), because
the stack grows downward
the contents of the array, however, are the same
in both cases
element 0 (*ip) is a pointer to variable x
in the stack frame for test
element 1 is a pointer to global variable g

Young W. Lim Pointers 2020-11-06 Fri 20 / 22

Pointer example code (9)

we can see that structure s is instantiated twice,
both times on the stack
while the union pointed to by variable up
is allocated on the heap

Young W. Lim Pointers 2020-11-06 Fri 21 / 22

Pointer example code (10)

finally variable f is a pointer to function fun

in the disassembled code,
we find the following as the initial code for fun
08048414 <fun>:
8048414 : 55 push %ebp
8048415 : 89 e5 mov %esp, %ebp
8048417 : 83 ec 1c sub $0x1c, %esp
804841a : 57 push %edi

the value 0x8048414 printed for pointer f is
exactly the address of the first instruction
in the code for f

Young W. Lim Pointers 2020-11-06 Fri 22 / 22

	Introduction
	References
	Pointer Background

