
Young Won Lim
10/5/13

Operators (2A)

Young Won Lim
10/5/13

 Copyright (c) 2013 Young W. Lim.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Operators 3 Young Won Lim
10/5/13

Terms (1)

Atoms

Numbers

Variables

Compound Terms

Constants

Simple Terms

functor(term
1
, term

2
, …. , term

n
)

Atoms

Compound Terms
Predicates

A term without
any variables A ground term

Operators 4 Young Won Lim
10/5/13

Terms (2)

Atoms A string of characters
Characters enclosed in single quotation
A string of special characters

functor(term
1
, term

2
, …. , term

n
)

Numbers

Variables

Compound Terms

Variables:
Starting with a capital letter or _
Anonymous variable _ :
Multiple occurrence in one expression are
assumed to be distinct

Integer numbers

an atom

should be no space

Operators 5 Young Won Lim
10/5/13

Clause

Facts

Rules

Queries

Clause
1

Programs
Clause

n

Facts A predicate followed by a dot.
A functor, an atom

Rules
a head :-

a body .

A predicate (a functor, an atom)

A sequence of predicates separated by ,’s

Operators 6 Young Won Lim
10/5/13

Precedence

Every operator

higher
priority

associated with an integer number
[0, 1200]

lower
priority

400*
500+

SWI-prolog

a term If its principle functor is an operator
then the precedence of an operator

Else the precedence is defined as 0

5 + 7 precedence of 500
5*5 + 7*7 precedence of 500
sqrt(5 + 7) precedence of 0
man precedence of 0
3 * +(5, 7) precedence of 400

Operators 7 Young Won Lim
10/5/13

Associativity

500

Infix operators
Prefix operators
Postfix operators

a – b

≤500 < 500

14 – 4 – 2

(14 – 4) – 2 14 – (4 – 2)

500500 0 5000 500

Left Associative operator

the position of the operator
(infix operator)

the positions of the arguments

≤

y f x
<

the precedence of x < the precedence of f
the precedence of y ≤ the precedence of f

2 * 3 * 4 * 5

((2 * 3) * 4) * 5
Left Associative operator

Operators 8 Young Won Lim
10/5/13

Disjunction Operator

Infix operators
Prefix operators
Postfix operators

a, b, c, d

Right Associative operator

the position of the operator
(infix operator)

the positions of the arguments

≤

x f y
<

a, (b, c, d)
a, (b, (c, d))

Right Associative operator

2 ^ 3 ^ 4 ^5
2 ^ (3 ^ 4 ^5)
2 ^ (3 ^ (4 ^5))

2 ** 3 ** 4 **5

SWI-prolog ^ → **

the disjunction operator ; or |
head :- body1.
head :- body2.

head :- b1 ; b2; b3; b4.
head :- (b1 ; (b2; b3; b4)).
head :- (b1 ; (b2; (b3; b4))).

head :- body1 ; body2.

Right Associative operator

Operators 9 Young Won Lim
10/5/13

Comma Operator

:- op(1000, xfy, ‘,’);

Right Associative operator

the position of the operator
(infix operator)

the positions of the arguments

≤

x f y
<

?- (H, T) = (1,2,3);
H = 1
T = 2, 3, 4

?- (a) = a.
Yes

?- (A,B,C) = (1,2,3,4,5,6).
A = 1
B = 2
C = 3,4,5

Comma Sequences

Prolog clauses use comma sequences.

No empty sequence
The shortest sequence
– one element

(A,B,C) = (1,(2,(3,4,5,6)))

Operators 10 Young Won Lim
10/5/13

Negation As Failure

Right Associative operator

bachelor(P) :- male(P), not(married(P)).

male(henry).

male(tom).

married(tom).

?- bachelor(henry).
Yes

?-bachelor(tom).
No

?-bachelor(Who).
Who=henry;
No

?- not(married(Who)).
No.

For the variable binding Who=tom,
married(Who) succeeds
not(married(Who)) fails

Negative goals with variables cannot
be expected to produce bindings of
the variables for which the goals fails

not not not married(P)
not (not not married(P))
not (not (not married(P)))
not (not (not (married(P)))

Operators 11 Young Won Lim
10/5/13

NAF (Negation As Failure)

PLANNER

if (not (goal p)), then (assert ¬p)

If the goal to prove p fails, then assert ¬p

NAF literals of the form of not p can occur
in the body of clauses

Can be used to derive other NAF literals

Prolog

p ← q ⋀ not r
q ← s
q ← t
t

If NAF used to derive not p (p is assumed
not to hold) from failure to derive p

Not p can be different from the statement
¬p of the logical negation of p, depending
on the completeness of the inference
algorithm and thus also on the formal
logic system

Operators 12 Young Won Lim
10/5/13

Infix Operators

y f x
INFIX Operators

left-associative +, –, *, /

x f y right-associative , (subgoals)

x f x non-associative =, is, < (no nesting)

y f y Not possible

Operators 13 Young Won Lim
10/5/13

Prefix & Postfix Operators

 f x
PREFIX Operators

non-associative – (--3 not possible)

 f y right-associative , (subgoals)

x f non-associative

y f left-associative

POSTFIX Operators

Operators 14 Young Won Lim
10/5/13

Operator Examples

?- current_op(Precedence, Associativity, *).
Precedence = 400
Associativity = yfx
Yes

?- current_op(Precedence, Associativity, **).
Precedence = 200
Associativity = xfx ;
No

?- current_op(Precedence, Associativity, -).
Precedence = 500
Associativity = yfx ;
Precedence = 500
Associativity = fx ;
No

?- current_op(Precedence, Associativity, <).
Precedence = 700
Associativity = xfx ;
No

?- current_op(Precedence, Associativity, =).
Precedence = 700
Associativity = xfx ;
No

?- current_op(Precedence, Associativity, :-).
Precedence = 1200
Associativity = xfx ;
Precedence = 1200
Associativity = fx ;
No

left-associative

left-associative

non-associative

non-associative

non-associative

non-associative

Operators 15 Young Won Lim
10/5/13

Operator Examples

:=

?-

;

,

not

is, =.., <, etc.

+, –

*, /

^

xfx, fx

fx

xfy

xfy

fy

xfx

yfx, fx

yfx

xfy

non-associative

non-associative

right associative

right associative

right associative

non-associative

left associative

left associative

right associative

Large P

Small P

Young Won Lim
10/5/13

References

[1] U. Endriss, “Lecture Notes : Introduction to Prolog Programming”
[2] http://www.learnprolognow.org/ Learn Prolog Now!
[3] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[4] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html

http://www.learnprolognow.org/
http://www.csupomona.edu/~jrfisher/

