
File Operations (11A)

Young W. Lim
4/2/14

 Copyright (c) 2013 -2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

Files (11A)

based on the following document:
http://www.learnprolognow.org/ Learn Prolog Now!

mailto:youngwlim@hotmail.com
http://www.learnprolognow.org/

Young W. Lim
4/2/14

3Files (11A)

Reading in Programs

A Prolog source file is a plain text file containing a Prolog program or part
thereof. Prolog source files come in three flavours:

A traditional : consult, ensure_loaded
Prolog source file contains Prolog clauses and directives, but no module
declaration (see module/1). They are normally loaded using consult/1 or
ensure_loaded/1. Currently, a non-module file can only be loaded into a
single module.

A module : use_module
Prolog source file starts with a module declaration. The subsequent Prolog
code is loaded into the specified module, and only the exported predicates are
made available to the context loading the module. Module files are normally
loaded with use_module/[1,2].

An include : include
Prolog source file is loaded using the include/1 directive, textually including
Prolog text into another Prolog source. A file may be included into multiple
source files and is typically used to share declarations such as multifile or
dynamic between source files.

Young W. Lim
4/2/14

4Files (11A)

Consult, List Abbreviation

consult(:File)
Read File as a Prolog source file. Calls to consult/1 may be abbreviated by
just typing a number of filenames in a list. Examples:

 ?- consult(load). % consult load or load.pl
 ?- [library(lists)]. % load library lists
 ?- [user]. % Type program on the terminal

The predicate consult/1 is equivalent to load_files(File, []), except for
handling the special file user, which reads clauses from the terminal. See also
the stream(Input) option of load_files/2. Abbreviation using ?- [file1,file2].
does not work for the empty list ([]). This facility is implemented by defining
the list as a predicate. Applications may only rely on using the list
abbreviation at the Prolog toplevel and in directives.

[File1,File2,...,FileN]. % the list abbreviation

:- [File1,File2,...,FileN]. % directive

Young W. Lim
4/2/14

5Files (11A)

load_files

load_files(:Files, +Options)
The predicate load_files/2 is the parent of all the other loading predicates
except for include/1. It currently supports a subset of the options of Quintus
load_files/2. Files is either a single source file or a list of source files. The
specification for a source file is handed to absolute_file_name/2. See this
predicate for the supported expansions. Options is a list of options using the
format OptionName(OptionValue).

stream(Input)

This SWI-Prolog extension compiles the data from the stream Input. If this option is
used, Files must be a single atom which is used to identify the source location of the
loaded clauses as well as to remove all clauses if the data is reconsulted.

This option is added to allow compiling from non-file locations such as databases, the
web, the user (see consult/1) or other servers. It can be combined with format(qlf) to
load QLF data from a stream.

options

 autoload(Bool)
 derived_from(File)
 dialect(+Dialect)
 encoding(Encoding)
 expand(Bool)
 format(+Format)
 if(Condition)
 imports(Import)
 modified(TimeStamp)
 must_be_module(Bool)
 qcompile(Atom)
 redefine_module(+Action)
 reexport(Bool)
 register(Bool)
 sandboxed(Bool)
 scope_settings(Bool)
 silent(Bool)
 stream(Input)

Young W. Lim
4/2/14

6Files (11A)

Modules

Modules essentially allow you to hide predicate definitions.
public predicates
private predicates

making a file into a module by putting a module declaration at the top.

Module declarations

 :- module(ModuleName, List_of_Predicates_to_be_Exported).

the name of the module
the list of public predicates
 these will be the only predicates that are accessible from outside the module.

Young W. Lim
4/2/14

7Files (11A)

Modules

 printActors(Film):-
 setof(Actor,starring(Actor,Film),List),
 displayList(List).

 displayList([]):- nl.
 displayList([X|L]):-
 write(X), tab(1),
 displayList(L).

 printMovies(Director):-
 setof(Film,directed(Director,Film),List),
 displayList(List).

 displayList([]):- nl.
 displayList([X|L]):-
 write(X), nl,
 displayList(L).

 :- [printActors].
 :- [printMovies].

printActors.pl printMovies.pl

main.pl

redefinition

Young W. Lim
4/2/14

8Files (11A)

Modules

:- module(printActors, [printActors/1]).

 printActors(Film):-
 setof(Actor,starring(Actor,Film),List),
 displayList(List).

 displayList([]):- nl.
 displayList([X|L]):-
 write(X), tab(1),
 displayList(L).

:- module(printMovies, [printMovies/1]).

 printMovies(Director):-
 setof(Film,directed(Director,Film),List),
 displayList(List).

 displayList([]):- nl.
 displayList([X|L]):-
 write(X), nl,
 displayList(L).

 :- use_module(printActors).
 :- use_module(printMovies).

printActors.pl printMovies.pl

main.pl

hidden hidden

Young W. Lim
4/2/14

9Files (11A)

Directives

Specifies directives to run at load time

A rule without a head

:- predicates to be executed.

 A directive is an instruction to the compiler.
Directives are used to set (predicate) properties, set flags and load files.
Directives are terms of the form :- <term>. .

Here are some examples:
:- use_module(library(lists)).
:- dynamic
 store/2. % Name, Value

store/2 is a built-in predicate that can be modified during program execution

The directive initialization/1 can be used to run arbitrary Prolog goals.
The specified goal is started after loading the file in which it appears has completed.

SWI-Prolog compiles code as it is read from the file, and directives are executed as goals.
This implies that directives may call any predicate that has been defined before the point
where the directive appears. It also accepts ?- <term>. as a synonym.

Young W. Lim
4/2/14

10Files (11A)

Dynamic Directives

dynamic

In Prolog, a procedure is either static or dynamic.

A static procedure:
its facts/rules are predefined at the start of execution,
and do not change during execution.
usually defined in a file which will be loaded

A dynamic procedure:
possible to add extra facts/rules to the procedure (assert/asserta/assertz)
possible to remove facts/rules using (retract/retractall)
during execution of a Prolog query
the procedure must be declared as dynamic.

 :- dynamic likes/2.

Young W. Lim
4/2/14

11Files (11A)

Library

Libraries are modules defining common predicates,
and can be loaded using the normal commands for importing modules.

When specifying the name of the library that you want to use,
so that Prolog knows where to look for it (lirary directory)

:- use_module(library(lists)).

 to load a library called lists

lists.pl

Young W. Lim
4/2/14

12Files (11A)

Importing Modules by filenames

Predicates can be added to a module by importing them from another module.
Importing adds predicates to the namespace of a module.

Note that both directives take filename(s) as arguments.
Modules are imported based on their filename rather than their module name.

use_module(+Files)

:- module(shapes, []).
:- use_module(library(lists)).

flatten(cube, square).
flatten(ball, circle).

use_module(+File, +ImportList)

:- use_module(library(lists), [member/2,
 append/2 as list_concat
]).
:- use_module(library(option), except([meta_options/3])).

lists.pl

lists.pl

option.pl

loads member/2 from the lists
library and append/2 under
the name list_concat

 loads all exports from library
option except for meta_options/3.

Young W. Lim
4/2/14

13Files (11A)

Absolute File Nam

Prolog source files are located using absolute_file_name/3 with the following options:

locate_prolog_file(Spec, Path) :-
 absolute_file_name(Spec,
 [file_type(prolog),
 access(read)
],
 Path).

The file_type(prolog) option is used to determine the extension of the file using
prolog_file_type/2. The default extension is .pl.
Spec allows for the path alias construct defined by absolute_file_name/3.
The most commonly used path alias is library(LibraryFile).

The example below loads the library file ordsets.pl

:- use_module(library(ordsets)).

Young W. Lim
4/2/14

14Files (11A)

Input & Output Stream

open(+SrcDest, +Mode, -Stream, +Options)

SrcDest is either an atom specifying a file, or a term `pipe(Command)', like see/1 and tell/1.
Mode is one of read, write, append or update.
Mode append opens the file for writing, positioning the file pointer at the end.
Mode update opens the file for writing, positioning the file pointer at the beginning of the
file without truncating the file.
Stream is either a variable, in which case it is bound to an integer identifying the stream, or
an atom, in which case this atom will be the stream identifier.

open(+SrcDest, +Mode, ?Stream)

 Equivalent to open/4 with an empty option list.

close(+Stream)

Close the specified stream. If Stream is not open, an existence error is raised. However,
closing a stream multiple times may crash Prolog. This is particularly true for multithreaded
applications.

If the closed stream is the current input or output stream, the terminal is made the current
input or output.

Options
 type(Type)
 alias(Atom)
 encoding(Encoding)
 bom(Bool)
 eof_action(Action)
 buffer(Buffering)
 close_on_abort(Bool)
 locale(+Locale)
 lock(LockingMode)
 wait(Bool)

Young W. Lim
4/2/14

15Files (11A)

Writing to files

...
open(’hogwarts.txt’, write, Stream),

write(Stream, ’Hogwarts’),

nl(Stream),

close(Stream),
...

write(+Term)
Write Term to the current output, using brackets and
operators where appropriate.

write(+Stream, +Term)
 Write Term to Stream.

Young W. Lim
4/2/14

16Files (11A)

Reading to files

main:-
 open(’houses.txt’, read, Str),
 read(Str, House1),
 read(Str, House2),
 read(Str, House3),
 read(Str, House4),
 close(Str),
 write([House1, House2, House3, House4]), nl.

read(-Term)

Read the next Prolog term from the current input stream and unify it with Term. On a
syntax error read/1 displays an error message, attempts to skip the erroneous term and fails.
On reaching end-of-file Term is unified with the atom end_of_file.

read(+Stream, -Term)

Read Term from Stream.

 gryffindor.
 hufflepuff.
 ravenclaw.
 slytherin.

houses.txt

Young W. Lim
4/2/14

17Files (11A)

Reading to files

 main:-
 open(’houses.txt’, read, Str),
 read_houses(Str,Houses),
 close(Str),
 write(Houses), nl.

 read_houses(Stream,[]):-
 at_end_of_stream(Stream).

 read_houses(Stream, [X|L]):-
 \+ at_end_of_stream(Stream),
 read(Stream, X),
 read_houses(Stream, L).

It's the 'not provable' operator.
It succeeds if its argument is not provable
and fails if its argument is provable.

comma [,] : AND
semicolon [;] : OR
backslash + [\+] : NOT

Young W. Lim
4/2/14

18Files (11A)

Negation, Not, \+ (1)

negation, not, \+

The concept of logical negation

The only method that Prolog can use
to tell if a proposition is false is to try to prove it
(from the facts and rules)

if this attempt fails, it concludes that the proposition is false.
: negation as failure

When some critical fact or rule is missing,
it will not be able to prove the proposition.

the negation as failure is only relative to the "mini-world-model"
defined by the facts and rules known to the Prolog interpreter.
: the closed-world assumption

Also, there is a possibility it takes a very long time to determine
that the proposition cannot be proven.

Young W. Lim
4/2/14

19Files (11A)

Negation, Not, \+ (2)

Apart from negation-as-failure, modern Prolog interpreters uses
the symbol \+ (a mnemonic for not provable)
 \ : not and + : provable.

 ?- \+ (2 = 4). not provable
 ?- not(2 = 4). negation-as-failure

Arithmetic comparison operators having a negation
which makes it always possible to determine the falsity of the
given proposition

 ?- 2 =\= 4. negation

Young W. Lim
4/2/14

20Files (11A)

Reading to files

 readWord(InStream,W):-
 get_code(InStream, Char),
 checkCharAndReadRest(Char, Chars, InStream),
 atom_codes(W, Chars).

 checkCharAndReadRest(10,[],_):- !. % Line Feed

 checkCharAndReadRest(32,[],_):- !. % Space

 checkCharAndReadRest(-1,[],_):- !. % End of Stream

 checkCharAndReadRest(end_of_file,[],_):- !.

 checkCharAndReadRest(Char, [Char|Chars], InStream):-
 get_code(InStream,NextChar),
 checkCharAndReadRest(NextChar, Chars, InStream).

if the read char is Line Feed or
Space, or End of Stream, then a
complete word has been read,
otherwise the next character is
read.

Young W. Lim
4/2/14

21Files (11A)

Primitive Character I/O (1)

nl, nl(+Stream) Write a newline character put(10).

put_byte(+Byte), put_byte(+Stream, +Byte)
put_char(+Char), put_char(+Stream, +Char)
put_code(+Code), put_code(+Stream, +Code)

tab(+Amount), tab(+Stream, +Amount)

flush_output, flush_output(+Stream), ttyflush

get_byte(-Byte), get_byte(+Stream, -Byte)
get_code(-Code), get_code(+Stream, -Code)
get_char(-Char), get_char(+Stream, -Char)

peek_byte(-Byte), peek_byte(+Stream, -Byte)
peek_code(-Code), peek_code(+Stream, -Code)
peek_char(-Char), peek_char(+Stream, -Char)

(+Stream, +Len, -String)

skip(+Code), skip(+Stream, +Code)
 Read the input until Code or the end of the file is encountered.

Young W. Lim
4/2/14

22Files (11A)

Primitive Character I/O (2)

get_single_char(-Code)
 Unlike get_code/1, this predicate does not wait for a return. The character is not
echoed to the user's terminal. This predicate is meant for keyboard menu
selection, etc.

at_end_of_stream, at_end_of_stream(+Stream)

set_end_of_stream(+Stream)

copy_stream_data(+StreamIn, +StreamOut, +Len)
 Copy Len codes from StreamIn to StreamOut.
copy_stream_data(+StreamIn, +StreamOut)
 Copy all (remaining) data from StreamIn to StreamOut.

read_pending_input(+StreamIn, -Codes, ?Tail)
 Read input pending in the input buffer of StreamIn and return it in the difference
list Codes-Tail. That is, the available characters codes are used to create the list
Codes ending in the tail Tail. This predicate is intended for efficient unbuffered
copying and filtering of input coming from network connections or devices.

Young W. Lim
4/2/14

23Files (11A)

Atom (1)

Predicates to convert between Prolog constants and lists of character codes.

Converting from a constant to a list of character codes
● atom_codes/2
● number_codes/2
● name/2

Converting from a list of character codes to a constant
● atom_codes/2 will generate an atom
● number_codes/2 will generate a number or exception
● name/2 will return a number if possible and an atom otherwise.

The ISO standard defines atom_chars/2 to describe the `broken-up' atom as a list
of one-character atoms instead of a list of codes.

Young W. Lim
4/2/14

24Files (11A)

Atom (2)

atom_codes (?Atom, ?String)
atom_chars (?Atom, ?CharList)
char_code (?Atom, ?Code)
number_chars (?Number, ?CharList)
number_codes (?Number, ?CodeList)
atom_number (?Atom, ?Number)
name (?Atomic, ?CodeList)
term_to_atom (?Term, ?Atom)
atom_to_term (+Atom, -Term, -Bindings)
atom_concat (?Atom1, ?Atom2, ?Atom3)
atomic_concat (+Atomic1, +Atomic2, -Atom)
atomic_list_concat(+List, -Atom)
atomic_list_concat(+List, +Separator, -Atom)
atom_length (+Atom, -Length)
atom_prefix (+Atom, +Prefix)
sub_atom (+Atom, ?Before, ?Len, ?After, ?Sub)
sub_atom_icasechk(+Haystack, ?Start, +Needle)

Files (11A)

References

[1] en.wikipedia.org
[2] en.wiktionary.org
[3] U. Endriss, “Lecture Notes : Introduction to Prolog Programming”
[4] http://www.learnprolognow.org/ Learn Prolog Now!
[5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html

Young W. Lim
4/2/14

26Files (11A)

http://www.learnprolognow.org/
http://www.csupomona.edu/~jrfisher/
http://www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html

