Propositional Logic – Semantics (3A)

Copyright (c) 2016 – 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

Semantics

gives meaning to the propositions

consists of rules for assigning either the value **T** or **F** to every proposition

The truth value of a proposition

If a proposition has truth value **T**, we say it is true Otherwise, we say it is false

Semantic Rules

- 1. the logical value **True** ← the value **T** always the logical value **False** ← the value **F** always
- 2. Every atomic proposition ← a value T or F

The set of all these assignments constitues a model or possible world

All possible worlds (assignments) are permissable

- 3. The truth values of arbitrary propositions connected with **connectives** are given by the connective **truth tables**.
- 4. The truth value for **compound propositions** are determined <u>recursively</u> using the truth tables according to the following rules

(a) the grouping () has highest precedence

- (b) the precedence order : \neg , \land , \lor , \rightarrow , \leftrightarrow
- (c) binary connectives : from left to right

A Model

A model or a possible world:

Every atomic proposition is assigned a value T or F

The set of **all** these assignments constitutes A **model** or a **possible world**

All possible worlds (assignments) are permissible

Α	В	AΛB	$A \Lambda B \Rightarrow A$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
<u> </u>	F	F	Т

Every atomic proposition : A, B

Semantics : the meaning of formulas

Truth values are assigned to the atoms of a formula in order to evaluate the truth value of the formula

An interpretation for A is a total function $I_A: P_A \rightarrow \{T, F\}$ that assigns the truth values **T** or F to every atom in P_A

 $A \in F$ a formula P_A the set of atoms in A

https://en.wikipedia.org/wiki/Syntax_(logic)#Syntactic_consequence_within_a_formal_system

	А	В	
Interpretation $I_1 \rightarrow$	Т	Т	
Interpretation $I_2 \implies$	Т	F	
Interpretation $I_3 \rightarrow$	F	Т	
Interpretation $I_4 \rightarrow$	F	F	

The Definition of a Model

A set of formulas $U = \{A_1, A_2, ...\}$ is *simultaneously* **satisfiable**

there exists an interpretation Isuch that $v_i(A_i) = T$ for all I $v_{I}(A_{i})$: the value of a formula A_{i} under an interpretation I

this satisfying interpretation I is a model of U

Mathematical Logic for Computer Science M. Ben-Arie

All possible worlds

Α	В			А	В			А	В		А	В	
Т	Т	Т		Т	Т	Т		Т	Т		Т	Т	Т
т	F			т	F	т		т	F	т	т	F	
F	T			F	Т			F	Т		F	Т	т
F	F		-	<u> </u>	F		-	<u> </u>	F	Т	F	F	Т
	В		-	Δ	В		-	A	В		 Δ	В	
A			-	A 			-				 A 		
Т	Т			т	т	Т		т	т		Т	Т	
Т	F	Т		Т	F			Т	F		Т	F	Т
F	Т			F	Т	Т		F	т	Т	F	Т	Т
F	F			F	F			F	F	т	F	F	т
A	В			A	В			A	В		A	В	
A T	B T		-	A T	B T	т		A T	B T	Т	 A T	B T	Т
Т	Т		-	Т	Т	т			Т		 Т	Т	
T T	T F	т		T T	T F	T		T T	T F	Т	 T T	T F	Т
T T F	T F T	т		T T F	T F T			T T F	T F T		T T F	T F T	T T
T T	T F	т	-	T T	T F	T		T T	T F	Т	 T T	T F	Т
T T F	T F T	т	-	T T F	T F T			T T F	T F T	Т	 T T F	T F T	T T
T T F	T F T	T	-	T T F	T F T			T T F	T F T	Т	 T T F	T F T	T T
T F F	T F T F	т		T F F A	T F T F			T F F A	T F T F	T	T F F A	T F T F	T T
T F F A T	T F F B T	T		T F F A T	T F T E B T	т		T F F A T	T F F B T	T T T	T F F A T	T F T F B T	T T T
T F F A T T	T F F B T F	T		T F F A T T	T F F B T F	т		T F F A T T	T F F B T F	T	T F F A T T	T F F B T F	T T T
T F F A T	T F F B T	T		T F F A T	T F T E B T	т		T F F A T	T F F B T	T T T	T F F A T	T F T F B T	T T T

Propositional Logic (3A) Semantics

Interpretations and all possible worlds

All possible worlds

$$\{I_1\}, \{I_2\}, \{I_3\}, \{I_4\},$$

$$\{I_1, I_2\}, \{I_1, I_3\}, \{I_1, I_4\}, \{I_2, I_3\}, \{I_2, I_4\}, \{I_3, I_4\},$$

$$\{I_1, I_2, I_3\}, \{I_1, I_2, I_4\}, \{I_2, I_3, I_4\},$$

$$\{I_1, I_2, I_3, I_4\}, \emptyset$$

All possible worlds

The set of all these assignments constitues a model or possible world

All **possible worlds** (assignments) are **permissable**

A proposition is called a **tautology** If and only if it is **true** in all possible worlds

A proposition is called a **contradiction** If and only if it is **false** in all possible worlds $A \in F$ (a set of formulas)

A is satisfiable $v_I(A) = T$ for some interpretation I A satisfying interpretation is a model for A

A is **valid**

$\models A$

 $v_I(A) = T$ for all interpretation *I*

A valid propositional formula is called a tautology

Satisfiable

formulas \vDash

Mathematical Logic for Computer Science M. Ben-Arie

P	${\cal Q}$	$P \wedge Q$	$P \vee Q$	$P \underline{\vee} Q$	$P \underline{\wedge} Q$	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$
Т	Т	Т	Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	F	F	т	F
F	Т	F	Т	Т	F	Т	F	F
F	F	F	F	F	Т	т	т	т

T = true, F = false \land = AND (logical conjunction) \lor = OR (logical disjunction) \bigvee = XOR (exclusive or) \land = XNOR (exclusive nor) \rightarrow = conditional "if-then" \leftarrow = conditional "if-then" \leftarrow = conditional "(then)-if" \iff biconditional or "if-and-only-if" is logically equivalent to \land : XNOR (exclusive nor).

Semantic Rule Purposes

The semantics for propositional logic

- assign truth values to all propositions
- could use different truth tables from the conventional ones
- but it must provide a way to reflect the real world
 - → to allow reasoning
- The purpose is to make statements about the real world
- and to reason with these statements
- the semantics must reflect the way humans reason with the statements in the world
- some difficulty with $A \rightarrow B$

a clause is an expression formed from a finite collection of literals (variables or their negations) – atoms

A clause is true

either whenever **at least one** of the literals that form it is true (a disjunctive clause, the most common use of the term), or when **all** of the literals that form it are **true** (a conjunctive clause, a less common use of the term).

it is a finite disjunction or conjunction of literals, depending on the context.

CNF

DNF

https://en.wikipedia.org/wiki/Clause_(logic)

Semantics allows you to <u>relate</u> the symbols in the logic to the **domain** you're trying to **model**.

An interpretation I assigns a truth value to each atom

A body $b1 \wedge b2$ is true in I iff b1 is true in I and b2 is true in I. A rule $h \leftarrow b$ is false in I iff b is true in I and h is false in I. A knowledge base KB is true in I iff every clause in KB is true in I.

A model of a set of clauses is an interpretation in which all the clauses are true. (a set of formulas) A satisfying interpretation

If KB is a set of clauses and g is a conjunction of atoms,

If **g** is **true in** <u>every</u> model of KB, then **g** is a **logical consequence of KB**, written **KB** = **g**.

Model Example

Interpretation 11, 12, 13, 14, 15 model 11, 13, 14 An interpretation I assigns a truth value to each atom

A satisfying interpretation

Entailment Example

KB

p → q	KB ⊨ p	KB ⊨ p ← q
q	KB ⊨ q	KB ⊨ r ← s
r ← s	KB ⊭ r	
	KB ⊭ s	

Entailment Example

https://www.cs.ubc.ca/~kevinlb/teaching/cs322%20-%202009-10/Lectures/Logic2.pdf

Propositional Logic (3A) Semantics Young Won Lim 5/30/17

References

- [1] en.wikipedia.org
- [2] en.wiktionary.org
- [3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
- [4] http://www.learnprolognow.org/ Learn Prolog Now!
- [5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
- [6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
- [7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
- [8] http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog