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Pre / Post  Increment 

x = x + 1;

x++;++x;

Pre Increment Post Increment

x = x + 1;

Assignment w/ 
Pre Increment

Assignment w/
Post Increment

y = x++;y = ++x;

x = x + 1;

y = x; x = x + 1;

y = x;

Increment before assigning Increment after assigning
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Pre / Post  Decrement 

x = x – 1;

x––;––x;

Pre Decrement Post Decrement

x = x – 1;

Assignment w/ 
Pre Decrement

Assignment w/
Post Decrement

y = x––;y = ––x;

x = x – 1;

y = x; x = x + 1;

y = x;

Increment before assigning Increment after assigning
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Pre / Post Increment Example

y = ++x;

x = x + 1;

y = x;

Increment before assigning &x   x

dataaddress

= 100

&y   y = 200

x

data

= 101

y = 101

+ 1

=incremented value

Before After

y = x++;

x = x + 1;

y = x;

Increment after assigning &x   x

dataaddress

= 100

&y   y = 200

x

data

= 101

y = 100

+ 1

=original value

Before After
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Pre / Post -Increment Pointer Variable

p = p + 1;

y = *p;

p = &x;

y = *p;

p = p + 1;

p = &x;

*p = *p + 1;

  y = *p;

p = &x;

  y = *p;

*p = *p + 1;

p = &x;

p = &x;

y = *++p;

y = *p++;

y = ++(*p);

y = (*p)++;

y = ++*p;

++,  – –  higher 
precedence than * 

int x = 100;

int *   p;
int y = 200;
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Pre-Increment Example (1)

&p p

dataaddress

 = &x p

data

 = &x +1

Before After

&x   x   = 100

&y   y = 200

x   = 100

y = 300

=Value at the 
incremented address

p = &x;

&x+1       300     300

+ 1

p = p + 1;

y = *p;

y = *++p;

int x = 100;

int *   p;
int y = 200;
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Pre-Increment Example (2)

&p p

dataaddress

 = &x p

data

 = &x

Before After

&x   x   = 100

&y   y = 200

x   = 101

y = 101

+ 1

=incremented value

p = &x;

y = ++(*p);

y = ++*p;

*p = *p + 1;

  y = *p;

int x = 100;

int *   p;
int y = 200;

++,  – –  higher 
precedence than * 
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Pre-Increment Example (3)

&p p

dataaddress

 = &x p

data

 = &x +1

Before After

&x   x   = 100

&y   y = 200

x   = 100

y = 100

=Value at the 
original address

&x+1       300     300

+ 1

y = *p;

p = p + 1;

p = &x;
y = *p++;

int x = 100;

int *   p;
int y = 200;
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Post-Increment Example (4)

&p p

dataaddress

 = &x p

data

 = &x

Before After

&x   x   = 100

&y   y = 200

x   = 101

y = 100

+ 1

=original value

  y = *p;

*p = *p + 1;

p = &x;

y = (*p)++;

int x = 100;

int *   p;
int y = 200;
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Example Code

int main (void)
{

int x[3] = {300, 100, 400};
       int y   = 200;
       int *p;
      

// & has higher priority than []
 
       p = &( x[1] );   // p = &x[1];  
       // p = x + 1 

printf(“&x[1]=%p &y=%p &p=%p\n”, &x[1], &y, &p);
       printf(“x=%d y=%d *p=%d p=%p\n”, x[1],y,*p,p);

printf(“&x=%p &y=%p &p=%p\n”, &x[1], &y, &p);
       printf(“x=%d y=%d *p=%d p=%p\n”, x[1],y,*p,p);

return 0;
}

y = *++p;

y = *p++;

y = ++(*p);

y = (*p)++;

y = ++*p;
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Array
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