
Young Won Lim
7/12/11

Operators (1A)

Young Won Lim
7/12/11

 Copyright (c) 2011 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Operators 3 Young Won Lim
7/12/11

Pre / Post Increment

x = x + 1;

x++;++x;

Pre Increment Post Increment

x = x + 1;

Assignment w/
Pre Increment

Assignment w/
Post Increment

y = x++;y = ++x;

x = x + 1;

y = x; x = x + 1;

y = x;

Increment before assigning Increment after assigning

Operators 4 Young Won Lim
7/12/11

Pre / Post Decrement

x = x – 1;

x––;––x;

Pre Decrement Post Decrement

x = x – 1;

Assignment w/
Pre Decrement

Assignment w/
Post Decrement

y = x––;y = ––x;

x = x – 1;

y = x; x = x + 1;

y = x;

Increment before assigning Increment after assigning

Operators 5 Young Won Lim
7/12/11

Pre / Post Increment Example

y = ++x;

x = x + 1;

y = x;

Increment before assigning &x x

dataaddress

= 100

&y y = 200

x

data

= 101

y = 101

+ 1

=incremented value

Before After

y = x++;

x = x + 1;

y = x;

Increment after assigning &x x

dataaddress

= 100

&y y = 200

x

data

= 101

y = 100

+ 1

=original value

Before After

Operators 6 Young Won Lim
7/12/11

Pre / Post -Increment Pointer Variable

p = p + 1;

y = *p;

p = &x;

y = *p;

p = p + 1;

p = &x;

*p = *p + 1;

 y = *p;

p = &x;

 y = *p;

*p = *p + 1;

p = &x;

p = &x;

y = *++p;

y = *p++;

y = ++(*p);

y = (*p)++;

y = ++*p;

++, – – higher
precedence than *

int x = 100;

int * p;
int y = 200;

Operators 7 Young Won Lim
7/12/11

Pre-Increment Example (1)

&p p

dataaddress

 = &x p

data

 = &x +1

Before After

&x x = 100

&y y = 200

x = 100

y = 300

=Value at the
incremented address

p = &x;

&x+1 300 300

+ 1

p = p + 1;

y = *p;

y = *++p;

int x = 100;

int * p;
int y = 200;

Operators 8 Young Won Lim
7/12/11

Pre-Increment Example (2)

&p p

dataaddress

 = &x p

data

 = &x

Before After

&x x = 100

&y y = 200

x = 101

y = 101

+ 1

=incremented value

p = &x;

y = ++(*p);

y = ++*p;

*p = *p + 1;

 y = *p;

int x = 100;

int * p;
int y = 200;

++, – – higher
precedence than *

Operators 9 Young Won Lim
7/12/11

Pre-Increment Example (3)

&p p

dataaddress

 = &x p

data

 = &x +1

Before After

&x x = 100

&y y = 200

x = 100

y = 100

=Value at the
original address

&x+1 300 300

+ 1

y = *p;

p = p + 1;

p = &x;
y = *p++;

int x = 100;

int * p;
int y = 200;

Operators 10 Young Won Lim
7/12/11

Post-Increment Example (4)

&p p

dataaddress

 = &x p

data

 = &x

Before After

&x x = 100

&y y = 200

x = 101

y = 100

+ 1

=original value

 y = *p;

*p = *p + 1;

p = &x;

y = (*p)++;

int x = 100;

int * p;
int y = 200;

Operators 11 Young Won Lim
7/12/11

Example Code

int main (void)
{

int x[3] = {300, 100, 400};
 int y = 200;
 int *p;

// & has higher priority than []

 p = &(x[1]); // p = &x[1];
 // p = x + 1

printf(“&x[1]=%p &y=%p &p=%p\n”, &x[1], &y, &p);
 printf(“x=%d y=%d *p=%d p=%p\n”, x[1],y,*p,p);

printf(“&x=%p &y=%p &p=%p\n”, &x[1], &y, &p);
 printf(“x=%d y=%d *p=%d p=%p\n”, x[1],y,*p,p);

return 0;
}

y = *++p;

y = *p++;

y = ++(*p);

y = (*p)++;

y = ++*p;

Operators 12 Young Won Lim
7/12/11

Array

Young Won Lim
7/12/11

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

