
Young Won Lim
8/28/15

Structures (1A)

Young Won Lim
8/28/15

 Copyright (c) 2010 - 2013 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Structures 3 Young Won Lim
8/28/15

Struct Declaration

struct aaa {

int i;

short s;

char c;

} ;

structure type
var.i = 10;

var.s = 1;

var.c = 'c';

struct aaa var;

Crating a structure in Octave

x.a = 1;

x.b = [1, 2; 3, 4];

x.c = "string";

definition

var declaration

var.i

var.s

var.c

&var.i

&var.s

&var.c

&var =

C Programming Language

var =
 scalar structure containing the fields:
 i = 10
 s = 1
 c = c

Structures 4 Young Won Lim
8/28/15

Dynamic Naming (var)

x.a = 1;

x.b = [1, 2; 3, 4];

x.c = "string";

x =
 scalar structure containing the fields:
 a = 1
 b =
 1 2
 3 4
 c = string

a = "BB";

x.a = 1;

x.(a) = 2;

x =
 scalar structure containing the fields:
 a = 1
 BB = 2

Structures 5 Young Won Lim
8/28/15

Using struct()

x = struct(“AA”, 1, “BB”, 2, “CC”, 'c');

x =
 scalar structure containing the fields:
 AA = 1
 BB = 2
 CC = c

Structures 6 Young Won Lim
8/28/15

Nested Structures in C

struct point {

int x

int y

} ;
r.p1

address data

r.p2

&r.p1

&r.p2

struct point pa ;

r.p1 = pa ;
r.p2 = pb ;

struct point {

int x ;

int y ;

} ;

struct rect {

 struct point p1 ;

 struct point p2 ;

} ;

struct point pb ;

struct rect r ;

pa.x = 10 ;
pa.y = 20 ;
pb.x = 300 ;
pb.y = 400 ;

r.p1.x

r.p1.y

r.p2.x

r.p2.y

&r.p1.x

&r.p1.y

&r.p2.x

&r.p2.y

Structures 7 Young Won Lim
8/28/15

Array Implementation

Var(1).i = 10;
Var(1).s = 1;
Var(1).c = 'a';

Var(2).i = 20;
Var(2).s = 2;
Var(2).c = 'b';

Var(3).i = 30;
Var(3).s = 3;
Var(3).c = 'c';

octave:31> Var(1)
ans =
 scalar structure containing the fields:
 i = 10
 s = 1
 c = a

octave:32> Var(2)
ans =
 scalar structure containing the fields:
 i = 20
 s = 2
 c = b

octave:33> Var(3)
ans =
 scalar structure containing the fields:
 i = 30
 s = 3
 c = c

octave:31> Var
Var =
 1x3 struct array containing the fields:
 i
 s
 c

Structures 8 Young Won Lim
8/28/15

Struct as a function argument

Structures 9 Young Won Lim
8/28/15

Struct returning function

Structures 10 Young Won Lim
8/28/15

Struct pointer as a function argument

Young Won Lim
8/28/15

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

