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Struct Declaration

struct aaa {

int i;

short s;

char c;

} ;

structure type
var.i = 10;

var.s = 1;

var.c = 'c';

struct aaa var;

Crating a structure in Octave

x.a = 1;

x.b = [1, 2; 3, 4];

x.c = "string";

definition

var declaration

var.i

var.s

var.c

&var.i

&var.s

&var.c

&var =

C Programming Language

var =
  scalar structure containing the fields:
    i =  10
    s =  1
    c = c
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Dynamic Naming (var)

x.a = 1;

x.b = [1, 2; 3, 4];

x.c = "string";

x =
  scalar structure containing the fields:
    a =  1
    b =
       1   2
       3   4
    c = string

a = "BB";

x.a = 1;

x.(a) = 2;

x =
  scalar structure containing the fields:
    a =  1
    BB =  2
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Using struct()

x = struct(“AA”, 1, “BB”, 2, “CC”, 'c');

x =
  scalar structure containing the fields:
    AA =  1
    BB =  2
    CC = c
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Nested Structures in C

struct point    {

int x

int y

} ;
r.p1

address data

r.p2

&r.p1

&r.p2

struct point pa ;

r.p1 = pa ;
r.p2 = pb ;

struct point    {

int x ;

int y ;

} ;

struct rect    {

   struct point p1 ;

   struct point p2 ;

} ;

struct point pb ;

struct rect r ;

pa.x = 10 ;
pa.y = 20 ;
pb.x = 300 ;
pb.y = 400 ;

r.p1.x

r.p1.y

r.p2.x

r.p2.y

&r.p1.x

&r.p1.y

&r.p2.x

&r.p2.y
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Array Implementation

Var(1).i = 10;
Var(1).s = 1;
Var(1).c = 'a'; 

Var(2).i = 20;
Var(2).s = 2;
Var(2).c = 'b'; 

Var(3).i = 30;
Var(3).s = 3;
Var(3).c = 'c'; 

octave:31> Var(1)
ans =
  scalar structure containing the fields:
    i =  10
    s =  1
    c = a

octave:32> Var(2)
ans =
  scalar structure containing the fields:
    i =  20
    s =  2
    c = b

octave:33> Var(3)
ans =
  scalar structure containing the fields:
    i =  30
    s =  3
    c = c

octave:31> Var
Var =
  1x3 struct array containing the fields:
    i
    s
    c



Structures 8 Young Won Lim
8/28/15

Struct as a function argument 
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Struct returning function  
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Struct pointer as a function argument 
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