
Young Won Lim
1/31/19

OpenMP Overview (1A)

Young Won Lim
1/31/19

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

OpenMP Overview (1A) 3 Young Won Lim
1/31/19

Based on

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 4 Young Won Lim
1/31/19

OpenMP (Open Multi-Processing) is

an application programming interface (API)

that supports multi-platform shared memory multiprocessing

programming in C, C++, and Fortran, on most platforms

An application built with the hybrid model

OpenMP is used for parallelism within a (multi-core) node

MPI is used for parallelism between nodes.

https://en.wikipedia.org/wiki/OpenMP

OpenMP

OpenMP Overview (1A) 5 Young Won Lim
1/31/19

OpenMP is an implementation of multithreading,

a method of parallelizing whereby a master thread

(a series of instructions executed consecutively)

forks a specified number of slave threads

and the system divides a task among them.

The threads then run concurrently,

with the runtime environment allocating threads

to different processors.

Fork-Join Model

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 6 Young Won Lim
1/31/19

The section of code that is meant to run in parallel

is marked accordingly, with a compiler directive

that will cause the threads to form before the section is executed.

Each thread has an id attached to it

(obtained by omp_get_thread_num()).

The thread id is an integer, and the master thread has an id of 0.

After the execution of the parallelized code,

the threads join back into the master thread,

which continues onward to the end of the program.

Thread ID

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 7 Young Won Lim
1/31/19

By default, each thread executes

the parallelized section of code independently.

Work-sharing constructs can be used

to divide a task among the threads

Both task parallelism and data parallelism can be achieved

Work Sharing Constructs

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 8 Young Won Lim
1/31/19

The runtime environment allocates threads to processors

depending on usage, machine load and other factors.

The runtime environment or the code

can assign the number of threads based on environment variables,

The OpenMP functions are included

in a header file labelled omp.h in C/C++.

The runtime environment

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 9 Young Won Lim
1/31/19

thread creation constructs

workload distribution (work sharing) constructs

data-environment management constructs

thread synchronization constructs

user-level runtime routines constructs

environment variables constructs

In C/C++, OpenMP uses #pragmas.

The core elements

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 10 Young Won Lim
1/31/19

The pragma omp parallel is used to fork additional threads

to carry out the work enclosed in the construct in parallel.

The original thread will be denoted

as master thread with thread ID 0.

#include <stdio.h>

#include <omp.h>

int main(void) {

 #pragma omp parallel

 printf("Hello, world.\n");

 return 0;

}

Thread creation (1)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 11 Young Won Lim
1/31/19

$ gcc -fopenmp hello.c -o hello

Output on a computer with two cores, and thus two threads:

Hello, world.

Hello, world.

However, the output may also be garbled because of the race

condition caused from the two threads sharing the standard output.

Hello, wHello, woorld.

rld.

(in the case of using C++ std::cout, for example, the example is

always true. printf can be or not thread-safe)

Thread creation (2)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 12 Young Won Lim
1/31/19

to specify how to assign independent work

to one or all of the threads.

omp for or omp do: used to split up loop iterations

among the threads, also called loop constructs.

sections: assigning consecutive but independent code blocks

to different threads

single: specifying a code block that is executed

by only one thread, a barrier is implied in the end

master: similar to single, but the code block will be executed

by the master thread only and no barrier implied in the end.

Work-sharing creation (1)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 13 Young Won Lim
1/31/19

Example: initialize the value of a large array in parallel,

using each thread to do part of the work

int main(int argc, char **argv) {

 int a[100000];

 #pragma omp parallel for

 for (int i = 0; i < 100000; i++) {

 a[i] = 2 * i;

 }

 return 0;

}

Work-sharing creation (2)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 14 Young Won Lim
1/31/19

This example is embarrassingly parallel,

and depends only on the value of i.

The parallel for flag tells the OpenMP system

to split this task among its working threads.

The threads will each receive

a unique and private version of the variable.

For instance, with two worker threads,

one thread might be handed a version of i that runs from 0 to 49999

while the second gets a version running from 50000 to 99999.

Work-sharing creation (3)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 15 Young Won Lim
1/31/19

Since OpenMP is a shared memory programming model,

most variables in OpenMP code are visible to all threads by default.

But sometimes private variables are necessary

to avoid race conditions

and there is a need to pass values

between the sequential part and the parallel region

(the code block executed in parallel),

so data environment management is introduced

as data sharing attribute clauses

by appending them to the OpenMP directive.

Clauses

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 16 Young Won Lim
1/31/19

● Data sharing attribute clauses

● Synchronization clauses

● Scheduling clauses

● IF control

● Initialization

● Data copying

● Reduction

● Others

Clause types

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 17 Young Won Lim
1/31/19

shared

private

default

firstprivate

lastprivate

reduction

Data sharing attribute clauses (0)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 18 Young Won Lim
1/31/19

shared:

the data within a parallel region is shared by all threads

visible and accessible by all threads simultaneously

by default, all variables in the work sharing region

are shared except the loop iteration counter.

private:

the data within a parallel region is private to each thread

each thread will have a local copy as a temporary variable.

not initialized and not maintained for use outside

by default, the loop iteration counters private.

Data sharing attribute clauses (1)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 19 Young Won Lim
1/31/19

default:

the default data scoping within a parallel region will be

either shared, or none for C/C++, or

shared, firstprivate, private, or none for Fortran.

the none option forces to declare each variable

in the parallel region using the data sharing attribute clauses.

firstprivate:

like private except initialized to original value.

lastprivate:

like private except original value is updated after construct.

reduction:

a safe way of joining work from all threads after construct.

Data sharing attribute clauses (2)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 20 Young Won Lim
1/31/19

Critical

atomic

ordered

barrier

nowait

Synchronization clauses (0)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 21 Young Won Lim
1/31/19

critical:

executed by only one thread at a time

not simultaneously executed by multiple threads

to proctect shared data from race conditions.

atomic

the memory update (write, or read-modify-write)

in the next instruction will be performed atomically.

not make the entire statement atomic;

only the memory update is atomic.

might use a special hardware instructions

Synchronization clauses (1)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 22 Young Won Lim
1/31/19

ordered:

the structured block is executed in the order

in which iterations would be executed in a sequential loop

barrier:

each thread waits until all of the other threads of a team have

reached this point.

A work-sharing construct has

an implicit barrier synchronization at the end.

Synchronization clauses (2)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 23 Young Won Lim
1/31/19

nowait:

specifies that threads completing assigned work can proceed

without waiting for all threads in the team to finish.

In the absence of this clause, threads encounter a barrier

synchronization at the end of the work sharing construct.

Synchronization clauses (3)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 24 Young Won Lim
1/31/19

schedule(type, chunk): This is useful if the work sharing construct is

a do-loop or for-loop. The iteration(s) in the work sharing construct

are assigned to threads according to the scheduling method defined

by this clause. The three types of scheduling are:

● Static

● dynamic

● guided

Scheduling clauses (0)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 25 Young Won Lim
1/31/19

static schedule(type, chunk):

all the threads are allocated iterations

before they execute the loop iterations.

The iterations are divided among threads equally by default.

However, specifying an integer for the parameter chunk

will allocate chunk number of contiguous iterations

to a particular thread.

Scheduling clauses (1)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 26 Young Won Lim
1/31/19

dynamic schedule(type, chunk):

some of the iterations are allocated to a smaller number of threads.

Once a particular thread finishes its allocated iteration,

it returns to get another one from the iterations that are left.

The parameter chunk defines the number of contiguous iterations

that are allocated to a thread at a time.

Scheduling clauses (2)

https://en.wikipedia.org/wiki/OpenMP

OpenMP Overview (1A) 27 Young Won Lim
1/31/19

guided schedule(type, chunk):

A large chunk of contiguous iterations are allocated

to each thread dynamically (as above).

The chunk size decreases exponentially

with each successive allocation to a minimum size

specified in the parameter chunk.

Scheduling clauses (2)

https://en.wikipedia.org/wiki/OpenMP

Young Won Lim
1/31/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28

