Undetermined Coefficients (3A)

Copyright (c) 2011 - 2014 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Finding a Particular Solution - Undetermined Coefficients

Particular Solutions

DEQ

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = g(x)$$

When coefficients are constant

particular solution

by a conjecture

- (I) FORM Rule
- (II) Multiplication Rule

And
$$g(x) = \begin{cases} \text{A constant or} & & k \\ \text{A polynomial or} & & & P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 \\ \text{An exponential function or} & & e^{\alpha x} \\ \text{A sine and cosine functions or} & & \sin(\beta x) & \cos(\beta x) \\ \text{Finite sum and products of the} & & e^{\alpha x} \sin(\beta x) + x^2 \end{cases}$$

And

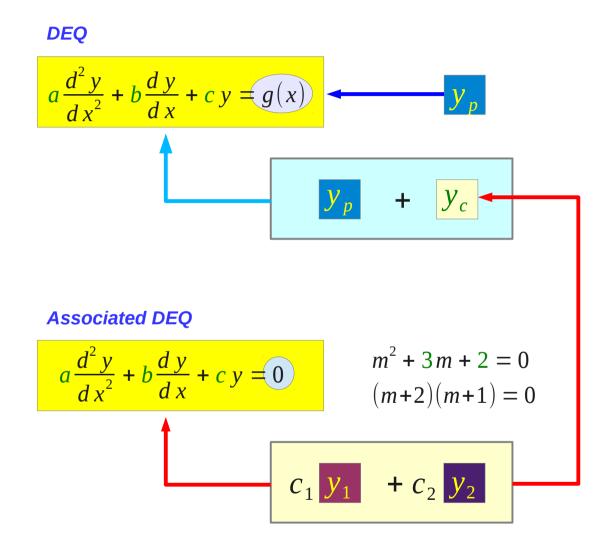
$$g(x) \neq \ln x$$
 $\frac{1}{x}$ $\tan x$ $\sin^{-1} x$

Form Rule

DEQ

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = g(x)$$

When coefficients are constant

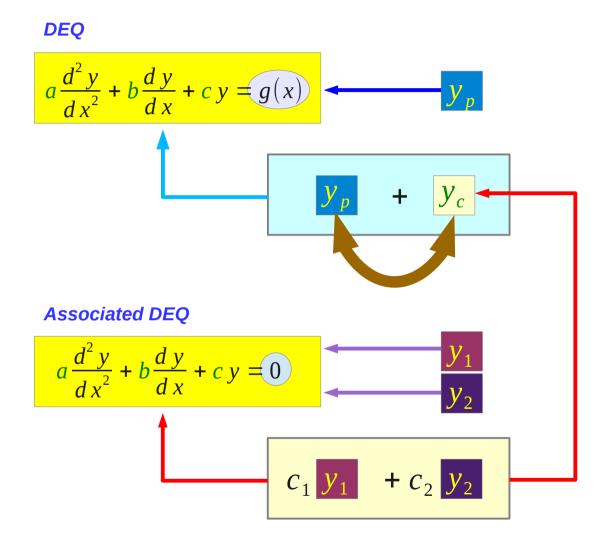

by a conjecture

particular solution

- (I) FORM Rule
- (II) Multiplication Rule

$$g(x) = 2$$
 $y_p = A$ $g(x) = 3x+4$ $y_p = Ax+B$ $g(x) = 6x^2-7$ $y_p = Ax^2+Bx+C$ $g(x) = \sin 8x$ $y_p = A\cos 8x+B\sin 8x$ $g(x) = \cos 9x$ $y_p = A\cos 9x+B\sin 9x$ $g(x) = e^{10x}$ $y_p = Ae^{10x}$ $y_p = Ae^{10x}$ $y_p = Ae^{11x}\sin 12x$ $y_p = Ae^{11x}\sin 12x+Be^{11x}\cos 12x$ $g(x) = 5x\sin(3x)$ $y_p = (Ax+B)\cos(3x)+(Cx+D)\sin(3x)$

Form Rule Example


$$y_p = Ax + B$$
$$y_p' = A$$
$$y_p'' = 0$$

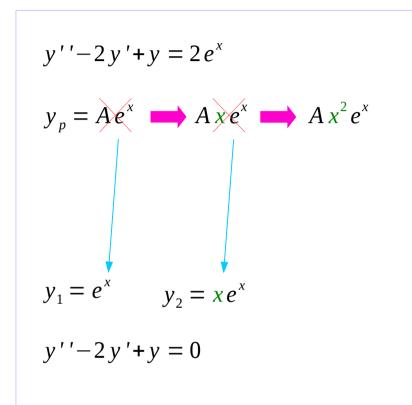
$$y_p'' + 3y_p' + 2y_p$$

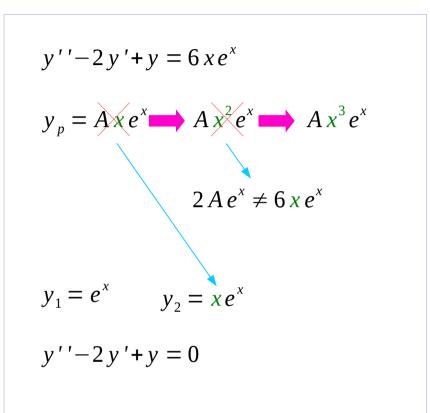
= $3A + 2(Ax+B)$
= $2Ax+3A+2B$
= x

$$2A = 1$$
 $A = \frac{1}{2}$
 $3A + 2B = 0$ $B = -\frac{3}{4}$
 $y_p = \frac{1}{2}x - \frac{3}{4}$

$$y = c_1 e^{-x} + c_2 e^{-2x} + \frac{1}{2} x - \frac{3}{4}$$

Multiplication Rule


use
$$y_p = x^n y_1$$
 $y_p = x^n y_2$
if $y_p = y_1$ $y_p = y_2$


When y_p contains a term which is the same term in y_p

Use y_p multiplied by x^n

n is the smallest positive integer that eliminates the duplication

Multiplication Rule Example (1)

$$y_p = x(Ax+B)e^x \rightarrow Bxe^x$$
$$y_p = x^2(Ax+B)e^x$$

Multiplication Rule Example (2)

$$y'+4y = e^{x}\sin(2t) + 2t\cos(2t)$$

$$y_{p}(t) = e^{x}(A\cos(2t) + B\sin(2t)) + (Ct+D)\cos(2t) + (Et+F)\sin(2t)$$

$$y_{p}(t) = e^{x}(A\cos(2t) + B\sin(2t)) + t(Ct+D)\cos(2t) + t(Et+F)\sin(2t)$$

$$y_{h}(t) = c_{1}e^{+i2t} + c_{2}e^{-i2t}$$

$$= (c_{3}\cos(2t) + c_{4}\sin(2t))$$

$$y''+5y'+6y = t^{2}e^{-3t}$$

$$y_{p}(t) = (At^{2}+Bt+C)e^{-3t}$$

$$y_{p}(t) = t(At^{2}+Bt+C)e^{-3t}$$

$$y_{h} = c_{1}e^{-2t}+c_{2}e^{-3t}$$

Superposition (1)

DEQ

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 2x^2 + 3 + \cos 8x$$

$$(2x^2 + 3) + (\cos 8x)$$
additive

$$\frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0$$

$$\frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 2x^2 + 3$$

$$\frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = \cos 8x$$

$$y_{p1}$$

$$\frac{d^{2} y_{c}}{d x^{2}} + b \frac{d y_{c}}{d x} + c y_{c} = 0$$

$$\frac{d^{2} y_{p1}}{d x^{2}} + b \frac{d y_{p1}}{d x} + c y_{p1} = (2x^{2} + 3)$$

$$\frac{d^{2} y_{p2}}{d x^{2}} + b \frac{d y_{p2}}{d x} + c y_{p2} = \cos 8x$$

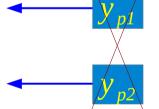
$$\frac{d^2}{dx^2} [y_c + y_{p1} + y_{p2}] + b \frac{d}{dx} [y_c + y_{p1} + y_{p2}] + c [y_c + y_{p1} + y_{p2}] = 2x^2 + 3 + \cos 8x$$

Superposition (2)

DEQ

$$a\frac{d^{2}y}{dx^{2}} + b\frac{dy}{dx} + cy = (2x^{2} + 3) \cdot \cos 8x$$

$$y_p = (Ax^2 + Bx + C) \cdot (\cos 8x + \sin 8x)$$


multiplicative

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = (2x^2 + 3)$$

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = \cos 8x$$

$$\frac{d^{2}}{dx^{2}}[y_{c}+y_{p1}y_{p2}]+b\frac{d}{dx}[y_{c}+y_{p1}y_{p2}]+c[y_{c}+y_{p1}y_{p2}]=(2x^{2}+3)\cdot\cos8x$$

Finite Number of Derivative Functions

$$y = x e^{mx}$$

$$\dot{y} = e^{mx} + mx e^{mx}$$

$$\ddot{y} = me^{mx} + m(e^{mx} + mxe^{mx}) = 2me^{mx} + m^2xe^{mx}$$

$$\ddot{y} = 2me^{mx} + m^2(e^{mx} + mxe^{mx}) = (m^2 + 2m)e^{mx} + m^3xe^{mx}$$

$$\{e^{mx}, xe^{mx}\}$$

two kinds

$$[e^{mx}, xe^{mx}]$$

linearly independent functions

$$y = 2x^2 + 3x + 4$$

$$\dot{y} = 4x + 3$$

$$\ddot{y} = 4$$

$$\ddot{y} = 0$$

$$\{2x^2+3x+4, 4x+3, 4\}$$

three kinds

$$\{Ax^2 + Bx + C\}$$

linearly independent functions

Infinite Number of Derivative Functions

$$y = +x^{-1}$$

$$y = \ln x$$

$$\dot{y} = -x^{-2}$$

$$y = +x^{-1}$$

$$\ddot{y} = +2x^{-3}$$

$$\dot{y} = -x^{-2}$$

$$\ddot{y} = -6x^{-4}$$

$$\ddot{y} = +2x^{-3}$$

 $\ddot{y} = -6x^{-4}$

•

These kinds of functions are not suitable for the undetermined coefficient method

the form of a particular solution is a linear combination of all linearly independent functions that are generated by repeated differentiation of g(x) input function

References

- [1] http://en.wikipedia.org/
- [2] M.L. Boas, "Mathematical Methods in the Physical Sciences"
- [3] E. Kreyszig, "Advanced Engineering Mathematics"
- [4] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"
- [5] www.chem.arizona.edu/~salzmanr/480a