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Differentials
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A triangle and its slope

y = f x 

f x1  h − f x1

h

 x1, f  x1

 x1  h , f  x1  h 

 x1, f  x1

http://en.wikipedia.org/wiki/Derivative

x1 x1+h

f (x1+h)

f (x1)
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Many smaller triangles and their slopes

f ( x1)

(x1, f (x1))

f ( x1+h2)

f ( x1+h1)

f ( x1+h)

f (x1 + h) − f ( x1)

h

f (x1 + h1) − f (x1)

h1

f (x1 + h2) − f (x1)

h2

lim
h→ 0

f (x1 + h) − f (x1)

h

x1 x1+h2 x1+h1 x1+h

(x1+h , f (x1+h))

h2

h1
h

(x1, f (x1))

(x1+h , f (x1+h))

http://en.wikipedia.org/wiki/Derivative
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The limit of triangles and their slopes

y = f x 

f ' (x1) = lim
h→0

f (x1 + h) − f (x1)

h

The derivative of the function f at x1

http://en.wiktionary.org/

f ' (x) = lim
h→0

f (x + h) − f (x)
h

=
df
dx

=
d
dx

f (x)

The derivative function of the function f

y ' = f ' (x)
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The derivative as a function

y = f x  x1

x2

x3

f  x1

f  x2

f  x3

f x 

x1

x2

x3

f ' x 1

f ' x 2

f ' x 3

f ' x 

= lim
h→0

f (x + h) − f (x)
h

y ' = f ' (x)

Derivative Function
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The notations of derivative functions

x1

x2

x3

f ' x 1

f ' x 2

f ' x 3

f ' (x)

lim
h→0

f (x + h) − f (x )

h

y ' = f ' x 

Largrange's Notation

dy
dx

=
d
dx

f (x)

Leibniz's Notation

ẏ = ḟ x 

Newton's Notation

D x y = D x f x 

Euler's Notation

not a ratio.

● derivative with respect to x
● x is an independent variable

slope of a 
tangent line
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Another kind of triangles and their slope

y = f x 

f

y ' = f ' x 

given x1

the slope of a tangent line

http://en.wikipedia.org/wiki/Derivative
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Differential in calculus

x1 x1  dx

f  x1

f  x1  dx 

dx

dy

Differential: dx, dy, … 
● infinitesimals
● a change in the linearization of a function
● of, or relating to differentiation

the linearization of a function

function

http://en.wikipedia.org/wiki/Derivative

f  x1

f  x1  dx 
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Approximation

x1 x1  dx

f  x1

f  x1  dx 

dx

dy

Differential: dx, dy, … 

the linearization of a function

function

http://en.wikipedia.org/wiki/Derivative

f  x1

f  x1  dx 

f (x1 + dx ) ≈ f (x1) + dy

= f (x1) + f ' (x1)dx

f ' (x1) = lim
h→0

f (x1 + h) − f (x1)

h
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Differential as a function 

x1

f (x1)

Line equation in the new coordinate.

dx

dy
dy = f ' (x1) dx

slope = f ' (x1)

http://en.wikipedia.org/wiki/Derivative

dx1 dx2 dx3

dy1 dy2 dy3

=
dy1

dx1

=
dy2

dx2

=
dy3

dx3
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dy = f ' (x) dx

dy
dx

= f ' (x)

ratio not a ratio

dy =
df
dx

dx

Differentials and Derivatives (1)

differentials derivative
x1

f (x1)

dx

dy
dy = f ' (x1) dx

slope = f ' (x1)

http://en.wikipedia.org/wiki/Derivative

dx1 dx2 dx3

dy1 dy2 dy3

=
dy1

dx1

=
dy2

dx2

=
dy3

dx3
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Differentials and Derivatives (2)

for small enough dx

f (x1 + dx ) ≈ f (x1) + dy

= f (x1) + f ' (x1)dx

f (x1 + dx ) = f (x1) + dy

= f (x1) + f ' (x1)dx

lim
dx→0

f (x1 + dx ) − f (x1)

dx
= f ' (x1)

lim
dx→0

x1

f (x1)

dx

dy
dy = f ' (x1) dx

slope = f ' (x1)

http://en.wikipedia.org/wiki/Derivative

dx1 dx2 dx3

dy1 dy2 dy3

=
dy1

dx1

=
dy2

dx2

=
dy3

dx3
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dy = f ' (x) dx

dy =
df
dx

dx

Differentials and Derivatives (3) 

dy = ḟ dx

dy = Dx f dx

∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

∫ dy =∫ 1dy = y

y = f (x)
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Integration Constant C 

∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

y + C1 = f (x) + C2

y = f (x) + C

place a 
constant

place another 
constant 

∫ dy = ∫ df
dx

dx + C

differs by a constant

∫ dy = ∫ f ' (x) dx + C

y = f (x) + C

place only one constant 
from the beginning
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The differential of a function ƒ(x) 
of a single real variable x is the 
function of two independent real 
variables x and dx given by

(x , dx ) dy

Differential as a function

x1

f  x1

Line equation in the new coordinate.

dx

dy
dy = f '  x1 dx

slope = f '  x1

http://en.wikipedia.org/wiki/Derivative

dy = f ' (x) dx
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Applications of Differentials (1)

∫ f ( g(x ) )⋅g ' (x) dx ∫ f ( u ) du=

Substitution Rule

u = g( x) du = g ' (x )dx

∫ f (g)
dg
dx

dx ∫ f ( g ) dg=

du =
dg
dx

dx(I) 

(II) 
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Applications of Differentials (2)

∫ f (x )g ' (x) dx f (x )g(x ) − ∫ f ' (x )g(x ) dx=

Integration by parts

u = f (x)

v = g(x )

du = f ' (x ) dx

dv = g ' ( x)dx

∫ f (x )g ' (x) dx f (x )g(x ) − ∫ f ' (x )g(x ) dx=

∫udv u v − ∫ v du=

du =
df
dx

dx

dv =
dg
dx

dx
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Derivatives and Differentials (large dx)

dx = 0.6;

f (x ) = sin(x )

tangent at x1

m = f ' (x1) f (x1) + f ' ( x1)dx

f ' (x1)dx

f (x1) = sin(x1)

dx

f (x2) + f ' (x2)dx

x1 x2
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Euler Method of Approximation (large dx)

dx = 0.6;

f (x ) = sin(x )

tangent at x1

m = f ' (x1) f (x2) ≈ f (x1) + f ' (x1)dx

f (x1) = sin(x1)

dx

f (x3) ≈ f (x2) + f ' (x2)dx
≈ (f (x2) + f ' (x2)dx ) + f ' (x2)dx

x1 x2 x3

Euler Method

Initial Value
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Derivatives and Differentials (large dx = 0.6)

dx = 0.6;

dy = f ' (x) dx

dy =
df
dx

dx ∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

y = f (x)
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Derivatives and Differentials (small dx = 0.2)

dx = 0.2;

dy = f ' (x) dx

dy =
df
dx

dx ∫ dy = ∫ df
dx

dx

∫ dy = ∫ f ' (x) dx

y = f (x)
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Euler's Method of Approximation
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Octave Code

clf; hold off;
dx = 0.2;

x = 0 : dx : 8;
y = sin(x);
plot(x, y);
t = sin(x) + cos(x)*dx ;
y1 = [y(1), t(1:length(y)-1)];

y2 = [0];
y2(1) = y(1);
for i=1:length(y)-1
  y2(i+1) = y2(i) + cos((i)*dx)*dx;
endfor

hold on
t = 0:0.01:8;
plot(t, sin(t), "color", "blue");
plot(x, y,   "color", 'blue',  "marker", 'o');
plot(x, y1,  "color", 'red',   "marker", '+');
plot(x, y2,  "color", 'green',  "marker", '*');
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Anti-derivatives
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?

Anti-derivative 

f (x)

differentiation derivative of ?

?
Anti-differentiation

f (x)
Anti-derivative of f(x)
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F ' (x) = f (x)

F (x)

Anti-derivative and Indefinite Integral 

∫ f (x)dx

Anti-derivative without constant
the most simple anti-derivative

Indefinite Integral 

F (x) + C the most general anti-derivative

∫ f (x)dx = F (x) + C

: a function of x
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Anti-derivative Examples 

f (x)=x2

F1(x)=
1
3

x3

F2(x)=
1
3

x3 + 100

F3(x)=
1
3

x3
− 49

All are 
Anti-derivative
of f(x)

the most general  
anti-derivative of 
f(x)

1
3

x3 + C

≡ ∫ x2dxindefinite 
Integral of f(x)

differentiation

Anti-differentiation
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Indefinite Integrals 

∫
a

x1

1 dx

x1 − a

∫
a

x1

d f
d x

dx

f (x1) − f (a)

∫
a

x

1 dx

x − a

∫ dx

x + C

∫
−c

x
d f
d x

dx

f (x) − f (a)

∫ d f
d x

dx

f (x) + C

∫ dy

y + C

given x
1

a variable x indefinite 
integral

given x
1

a variable x indefinite 
integral
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Indefinite Integrals via the Definite Integral

∫ f (x )dx
indefinite integral

∫
a

x

f (t ) dt
definite integral 

∫ f (x) d x = F (x ) + C

∫
a

x

f (t) d t = F (x) − F (a)

a common reference point : arbitrary

∫
a

x

f (t ) dt

f (x )

f (x )

anti-derivative 

anti-derivative 
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Definite Integrals via the Definite Integral

∫
x1

x2

f (t) dt

a common reference point : arbitrary

[ F (x) + c ]x1

x2 = F( x2)−F (x1) [ F (x) ]x1

x2 = F (x1) − F (x2)

Anti-derivative without constant

= ∫
a

x1

f (t) dt + ∫
a

x2

f (t ) dt

∫
a

x

f (t ) dt

∫ f (x)dx
indefinite integral

∫
a

x

f (t ) dt
definite integral 

f (x)

f (x)

anti-derivative 

anti-derivative 
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Indefinite Integral Examples 

f (x)=x2

=
1
3

x3
+ C∫ x2dxindefinite integral 

of f(x)

∫
0

x

f (x) dx = [ 13 x3]
0

x

=
1
3

x3

∫
a

x

f (x) dx = [ 13 x3]
a

x

=
1
3

x3
−

1
3
a3

∫
a

x

f (t ) dt = [ 13 t3]
a

x

=
1
3

x3
−

1
3

a3

∫
a

x

t 2 dt =
1
3

x3
−

1
3

a2anti-derivative by 
the definite 
integral of f(x)

d
dx∫a

x

f (t ) dt = f (x ) = x2
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Definite Integrals on [a, x
1
] 

∫
a

x1

f ' (x) dx [ f (x) ]a
x1 = f (x1)−f (a)

∫
a

x1

g(x) dx [G (x)]a
x1 = G (x1)−G(a)

view (I)

view (II)

∫
a

x1

1 dx f ' (x) = 1

g(x) = 1

∫
a

x1

f ' (x) dx

∫
a

x1

1 dx ∫
a

x1

g(x) dx

view (I)

view (II)
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Definite Integrals over an interval [x
1
, x

2
] 

a x1

1

x2
a x1 x2

x

area

length

f ' ( x)= 1

g(x) = 1

view (I) view (II)
G( x) = x

[ f (x) ]x1

x2 = f (x2)−f (x1) [G(x)]x1

x 2 = G (x2)−G(x1)

arbitrary reference 
point (a, f(a))

arbitrary reference 
point (a, G(a))

∫
x1

x2

f ' (x) dx = ∫
x1

x2

g (x) dx =
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Definite Integrals on [a, x
1
] and [a, x

2
]

a x2

a x2x1 a x2

G(x2)

x1

G(x1)

G(x )

length

a x2

G(x2)

x1

G(x1)

G(x )

length

f ' (x)

area

area

∫c

x2

f ' (x)dx −∫c

x1

f ' ( x)dx ∫c

x2

g(x )dx −∫c

x1

g(x)dx
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Derivative Function and Indefinite Integrals

lim
h→0

f (x1 + h) − f ( x1)

h
f ' (x1)

lim
h→0

f (x2 + h) − f (x2)

h
f ' (x2)

lim
h→0

f (x3 + h) − f (x3)

h
f ' (x3)

f ' (x ) = lim
h→0

f (x + h) − f (x)

h

x1 , x2 , x3

f ' (x1) , f ' (x2) , f ' (x3)

∫
x1

x2

f (x ) dx

F (x ) + C = ∫
a

x

f ( x) dx

[ x1 , x2] ,[ x3 , x4] , [x5 , x6]

[ F(x ) ]x 1

x 2 , [ F(x) ]x 3

x 4 , [ F (x ) ]x5

x6

∫
x3

x4

f (x ) dx

∫
x5

x6

f ( x ) dx

function of x function of x
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a
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Differential Equation

f (x ) = e3 x

f ' (x ) = 3e3 x

f ' (x ) − 3 f (x) = 3 e3x
−3 e3 x

= 0 f ' (x) − 3 f (x) = 0

f (x ) ?
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First Order Examples (y=f(x))

f ' (x) = f (x) f (x ) ?

An Example of  A First Order 
Differential Equation

f (x) = c ex

f ' (x) = f (x) f (x ) ?

An Example of  A First Order 
Initial Value Problem

f (x) = 3ex

f (0) = 3

y ' = y

y ' = y

f (0) = 3

y = c ex

y = 3ex

for all x I : (−∞ , +∞)

for all x I : (−∞ , +∞)

y ?

y ?
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Second Order Examples (y=f(x))

f ' ' (x) = f (x)

An Example of  A Second Order 
Differential Equation

c1 e
+x + c2e

−x

f ' ' (x) = f (x)

An Example of A Second Order 
Initial Value Problem

f ' (0) = 0

y ' ' = y

y ' ' = y

y ' (0) = 0

c1 e
+x + c2e

−x

for all x I : (−∞ , +∞)

for all x I : (−∞ , +∞)

f (0) = 1 f (0) = 1

f (x) = y =

+1⋅e+x − 1⋅e−x +1⋅e+x − 1⋅e−x

f (x) = y =

Guess the possible solution.
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General First & Second Order IVPs (y=f(x))

f ' ' (x) = f (x)

f ' (0) = 0

y ' ' = y

y ' (0) = 0
f (0) = 1 f (0) = 1

Guess the possible solution.

d2 y
d x2 = g(x , y , y ')

y (x0) = y0

y ' (x0) = y1

y ' ' = g (x , y , y ' )

y(x0) = y0

y ' (x0) = y1

d y
d x = g (x , y )

y (x0) = y0

y ' = g (x , y )

y(x0) = y0

f ' (x) = f (x) y ' = y

f (0) = 3 f (0) = 3

Second Order Initial Value Problem

First Order Initial Value Problem
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