
Young Won Lim
3/9/19

Monad P1 : Monadic Operations (3A)

Young Won Lim
3/9/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Monadic Operations (3A) 3 Young Won Lim
3/9/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Monadic Operations (3A) 4 Young Won Lim
3/9/19

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Effect

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Operations (3A) 5 Young Won Lim
3/9/19

1. Exception Handling Maybe a

2. Accumulate States State s a

3. IO Monad IO a

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Monad Applications

Monadic Operations (3A) 6 Young Won Lim
3/9/19

Monadic operations type signature

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – a function form

the types of inputs to
a monadic operation

the type of a return mondic value
from a monadic operation

function type

Monadic Operations (3A) 7 Young Won Lim
3/9/19

Monadic operations type signature

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

a monadic operation

= a function

● inputs

● a return monadic value

– returns a function as a value

– effect monad

– evaluating this returns val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – returning a monadic value

 M a

computations resulting in values

imperative code

effect-monad val-out-type

Monadic Operations (3A) 8 Young Won Lim
3/9/19

Monadic operations type signature

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

effect-monad produces a

result of a type of val-out-type

actions

computations

statements

in the imperative language

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – the result of a monadic value

Monadic Operations (3A) 9 Young Won Lim
3/9/19

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

the return type is a type application like a function application

the function part tells you ………………………… effect-monad

which effects are possible

the argument part tells you ………………………. val-out-type

what sort of value is produced by the operation.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – type application

function argument

type application

cf) function application

Maybe a → Maybe Int

f x f 3

Monadic Operations (3A) 10 Young Won Lim
3/9/19

when the type of a value contains
one or more (unconstrained) type variables,
so that the value may adopt any type
that results from substituting those variables with concrete types.

any type in which a type variable,
denoted by a type name beginning with a lowercase letter,
can appear without constraints (i.e. no left =>)

id :: a -> a
contains an unconstrained type variable a in its type,

Char -> Char
Integer -> Integer
(Bool -> Maybe Bool) -> (Bool -> Maybe Bool)

https://wiki.haskell.org/Polymorphism

Parametric Polymorphism

Maybe a

x :: Maybe Int

y :: Maybe String

Monadic Operations (3A) 11 Young Won Lim
3/9/19

passing an argument to the function

f :: Int -> Int
x :: Int

f x :: Int is an expression
where the expression x is applied as an argument to f *.

$ is often explained as the function application operator,
since f $ x = f x is more-or-less its definition

Applying a function is the same as calling it,
by supplying an argument.

-- A function
f :: a -> a
f x = x

-- Application of f
f 100

https://stackoverflow.com/questions/52058692/the-term-function-application-in-haskell

Function Application

Monadic Operations (3A) 12 Young Won Lim
3/9/19

Type Annotation

Prelude> id "a"
"a"
Prelude> id (3 :: Int)
3

TypeApplications extension allows explicit type arguments.

Prelude> :set -XtypeApplications

Prelude> id @String "a"
"a"
Prelude> id @Int 3
3

https://ghc.haskell.org/trac/ghc/wiki/TypeApplication

Type Annotation vs TypeApplication

Monadic Operations (3A) 13 Young Won Lim
3/9/19

a feature that lets a programmer explicitly declare
what types should be instantiated
for the arguments to a function application,
in which the function is polymorphic
(containing type variables and possibly constraints) .

Doing so essentially expedite
the type variable unification process,
which is what GHC normally attempts when dealing
with polymorphic function application.

 :set -XTypeApplications

answer_read = show (read @Int "3") -- "3" :: String
answer_show = show @Integer (read "5") -- "5" :: String
answer_showread = show @Int (read @Int "7") -- "7" :: String

https://ghc.haskell.org/trac/ghc/wiki/TypeApplication

TypeApplication

Monadic Operations (3A) 14 Young Won Lim
3/9/19

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

Monadic operations such as IO or State

have a return value, as well as

performing side-effects.

the only purpose of using these monadic operations is

to perform a side-effect,

writing to the screen ...……….. IO Monad

storing some state …….…… State Monad

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – IO and State Monads

Monadic Operations (3A) 15 Young Won Lim
3/9/19

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operation – the result type

put :: s -> (State s) ()

putStr :: String -> IO ()

world ((), world)

s ((), s)

the execution result type of
 the returned function

result

result

Monadic Operations (3A) 16 Young Won Lim
3/9/19

put :: s -> State s ()

put :: s -> (State s) ()

the operation is used only for its effect;

the value delivered is uninteresting

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – put example

put :: s -> (State s) ()

s ((), s)

result type

runState (put 5) 1

init State

 ((), 5)

new State

1

one value input type s

the effect-monad State s

the value output type ()

effect-monad val-out-type

(State s) ()

Monadic Operations (3A) 17 Young Won Lim
3/9/19

putStr :: String -> IO ()

delivers a string to stdout

but does not return anything meaningful

() val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – putStr example

World (a, World)

IO a

one value input type s

the effect-monad IO

the value output type ()

effect-monad val-out-type

IO ()

World ((), World)

IO ()

Monadic Operations (3A) 18 Young Won Lim
3/9/19

State

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – underlying functions

a parameterized type

about a function

executable

execution result

a monad type

effect-monad

statements in the
imperative language

val-out-type

world ((), world)

s ((), s)

IO ()

State s ()

 M a

imperative code

Monadic Operations (3A) 19 Young Won Lim
3/9/19

IO t and State s a types

newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state,

a : the type of the produced result

s -> (a, s) : function type

 type IO t = World -> (t, World) type synonym
world (t, world)

State
s (a, s)

runState :: State s a -> (s -> (s, a))

accessor function

Monadic Operations (3A) 20 Young Won Lim
3/9/19

Monadic Bind

We might not see the hidden effects,

but the compiler does.

The compiler de-sugars every do block and type-checks it.

The state might look like a global variable but it's not.

monadic bind makes sure that

● the state is threaded from function to function.

● it's never shared.

● in a concurrent Haskell code, there will be no data races.

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/12-State-Monad

M :: m a
F :: a -> m b
G :: b -> m c
H :: c -> m d

M >>= F >>= G >>= H

 (>>=) :: m a -> (a -> m b) -> m b

monadic operations
with a single input
can be chained

Monadic Operations (3A) 21 Young Won Lim
3/9/19

Parameter Hiding

If you have a global environment,

that is accessed by various functions

A global environment may be initialized by a configuration file

then you should thread it as a parameter to your functions

after having set it up in your main action.

instead of using annoying explicit parameter passing,

you can use a Monad to hide it

f :: Int -> World -> (Int, World) non-pure (side effects)

IO a = World -> (a, World) pure

f :: Int -> IO Int

https://wiki.haskell.org/Global_variables

configuration file

Monad

cumbersome parameter passing

parameter hiding

Monadic Operations (3A) 22 Young Won Lim
3/9/19

Global mutable variable in the State Monad

a do block looks very much like imperative code

with hidden side effects.

State monad code looks as if

the state were a global mutable variable.

● to access it, use get with no arguments

● to modify it, call put that returns no value

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/12-State-Monad

State
(x , s) s

State Int Int

global mutable variable :: type s

Monadic Operations (3A) 23 Young Won Lim
3/9/19

Haskell does not have states

but it’s type system is powerful enough

to construct the stateful program flow

function application enables

stateful computations

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Stateful computations

State
(1, 2) 1

State
(0, 1) 0

State
(2, 3) 2

State
Int (Int, Int)

(x, s) s

Monadic Operations (3A) 24 Young Won Lim
3/9/19

State Monad Methods

State
((), ns) _

State
(s, s) s

State
(y, s) s

State
(x, s) s’

State Int Int current monadic value

resulting monadic value
by the get method

resulting monadic value
by the put ns method

resulting monadic value
by the return y method

current state s

new state ns

result y

like a global variable

put ns

get

return y

Monadic Operations (3A) 25 Young Won Lim
3/9/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

put, get, return methods summary

State
((), ns)

put ns

_

State
((), s) _

State
(s, s)

get

s

State
((), s) _

State
(x, s)

return x

s

State
((), s) _

Monadic Operations (3A) 26 Young Won Lim
3/9/19

Global Variable Example

import Control.Monad.Trans.State

tick :: State Int Int
tick = do n <- get -- read Int state
 put (n+1) -- write Int state
 return n

test = do tick -- (0,1)
 tick -- (1,2)

runState test 0 -- (1,2)

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

test = tick >> tick

Monadic Operations (3A) 27 Young Won Lim
3/9/19

Threading the state

State
(x , s) s’

State Int Int current monadic value

State
(y , t) s next monadic value via

1) get, put, return methods

2) runState

runState test 0

 get / put / return

Monadic Operations (3A) 28 Young Won Lim
3/9/19

tick – State Monad Value

tick :: State Int Int
tick = do n <- get -- read Int state
 put (n+1) -- write Int state
 return n

State
((), ns) _

State
(s, s) s

State
(y, s) s

 put (n+1) n <- get

return y

State
(x, s) s

0

0 (0,0) 0 ((),0+1) 1 (0,1)

n=0

(_,0)

 return n

tick :: State Int Int

State
(y, s) s

1 (0,1)

postincrement

result first, then
increment

Monadic Operations (3A) 29 Young Won Lim
3/9/19

Like a global mutable variable

State Int Int

computations resulting in values

imperative code

tick :: State Int Int
tick = do n <- get
 put (n+1)
 return n

State
(s, s+1) s+1

like a global variable

underlying operation

 s+1

tick :: State Int Int

a do block looks very much like imperative code
with hidden side effects.

State monad code looks as if
the state were a global mutable variable.

Monadic Operations (3A) 30 Young Won Lim
3/9/19

Evaluating tick twice (1)

State
(_, 0) 0

tick

State
(0, 1) 1

tick

initial import Control.Monad.Trans.State

tick :: State Int Int
tick = do n <- get -- read Int state
 put (n+1) -- write Int state
 return n

test = do tick -- (0,1)
 tick -- (1,2)

runState test 0 -- (1,2)State
(1, 2) 2

after the 1st evaluation

tick
after the 2nd evaluation

 postincrement

 postincrement

Monadic Operations (3A) 31 Young Won Lim
3/9/19

Evaluating tick twice (2)

tick :: State Int Int
tick = do n <- get
 put (n+1)
 return n

State
(_, 0) 0

 0 tick :: State Int Int
tick = do n <- get
 put (n+1)
 return n

State
(0, 1) 1

 1

after the 1st evaluation
of tick

tick :: State Int Int
tick = do n <- get
 put (n+1)
 return n

State
(1, 2) 2

 2

after the 2nd evaluation
of tick

tick tick tick

 postincrement postincrement

Monadic Operations (3A) 32 Young Won Lim
3/9/19

Global Variable Example (1)

import Control.Monad.Trans.State

tick :: State Int Int
tick = do n <- get -- read Int state
 put (n+1) -- write Int state
 return n

tick2 :: State Int Int
tick2 = do n <- get -- read Int state
 put (n+2) -- write Int state
 return n

test = do tick -- (0,1)
 tick -- (1,2)
 tick2 -- (2,4)
 tick2 -- (4,6)

runState test 0 -- (4,6)

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

Monadic Operations (3A) 33 Young Won Lim
3/9/19

Global Variable Example (2)

import Control.Monad.Trans.State

tick :: State Int Int
tick = do n <- get -- read Int state
 put (n+1) -- write Int state
 return n

tick2 :: State Int Int
tick2 = do n <- get -- read Int state
 put (n+2) -- write Int state
 return n

test = do tick -- (0,1)
 tick -- (1,2)
 tick2 -- (2,4)
 tick2 -- (4,6)

runState test 0 -- (4,6)

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

test = do n <- get
 put (n+1)
 return n

n <- get
 put (n+1)
 return n

n <- get
 put (n+2)
 return n

n <- get
 put (n+2)
 return n

Monadic Operations (3A) 34 Young Won Lim
3/9/19

The return function takes x

and gives back a function

that takes a w0 :: World

and returns x along with the updated World,

but not modifying the given w0 :: World

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad – return method

returnx

w0 (x, w0) _ ((), w0)

Monadic Operations (3A) 35 Young Won Lim
3/9/19

Recall that interactive programs in Haskell are written

using the type IO a of actions that return a result of type a,

but may also perform some input/output.

A number of primitives are provided for building values of IO a type

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char

putChar :: Char -> IO ()

The use of return and >>= means that IO is monadic,

and hence that the do notation can be used to write interactive programs.

https://www.seas.upenn.edu/~cis552/11fa/lectures/monads2.html

IO Monad – actions and a result

Monadic Operations (3A) 36 Young Won Lim
3/9/19

the IO monad can be viewed as a special case of the state monad,

in which the internal state is a suitable representation

of the state of the world:

 type World = ...

 type IO a = World -> (a,World)

That is, an action can be viewed as a function

that takes the current state of the world as its argument,

and produces a value and a modified world as its result,

in which the modified world reflects any I/O performed by the action.

In reality, Haskell systems such as Hugs and GHC implement actions

in a more efficient manner, but for the purposes of understanding

the behavior of actions, the above interpretation can be useful.

https://www.seas.upenn.edu/~cis552/11fa/lectures/monads2.html

IO Monad – a special state monad

Monadic Operations (3A) 37 Young Won Lim
3/9/19

IO is a type of imperative procedures—

actions that can have side-effects when executed.

A value of IO Int, for example, is

a procedure that can do input and output

and, when it’s done, returns a value of type Int.

The most basic examples include

reading and writing from STDIN and STDOUT:

 readLn :: Read a => IO a

 putStrLn :: String -> IO ()

https://www.quora.com/What-is-an-IO-Monad

IO Monad – imperative procedures

readLn is a procedure that

consumes a line of input from STDIN

and parses it with the read function

putStrLn is a function that,

given a string,

returns a procedure that prints

that string to STDOUT

followed by a newline.

Monadic Operations (3A) 38 Young Won Lim
3/9/19

The IO procedures that we produce are executed

by Haskell’s runtime system which takes care of calling

the appropriate OS syscalls and libraries for actual effects,

as well as providing infrastructure like a lightweight thread scheduler.

this execution step is orthogonal to evaluation.

this simplifies normal Haskell function implementations

It is possible to evaluate an IO action without executing it

(using seq, for example), and the semantics of

how the effects of an IO action are executed

do not depend on how that IO action was evaluated.

https://www.quora.com/What-is-an-IO-Monad

IO Monad – independent execution and evaluation

Monadic Operations (3A) 39 Young Won Lim
3/9/19

The IO procedures are to be executed

IO monadic values differs from

expressions in an imperative language

we produce these expressions (IO monadic values) evaluation

just like we produce any other sort of value,

then the expressions are executed by a separate interpreter execution

with its own semantics and behavior (ie the runtime system).

https://www.quora.com/What-is-an-IO-Monad

IO Monad – executing IO monadic value

Monadic Operations (3A) 40 Young Won Lim
3/9/19

A common misconception regarding seq is that seq x "evaluates" x.

seq doesn't evaluate anything just by virtue of existing in the source file,

all it does is introduce an artificial data dependency

when the result of seq is evaluated,

the first argument must also be evaluated.

suppose x :: Integer, then seq x b behaves essentially like

if x == 0 then b else b – unconditionally equal to b,

but forcing x along the way.

the expression x `seq` x is completely redundant,

and always has exactly the same effect as just writing x.

https://www.quora.com/What-is-an-IO-Monad

seq

Monadic Operations (3A) 41 Young Won Lim
3/9/19

Haskell separates pure functions from computations

where side effects must be considered

by encoding those side effects as values of a particular type.

Specifically, a value of type (IO a) is an action,

which if executed would produce a value of type a.

f :: Int -> World -> (Int, World) non-pure (side effects)

IO a = World -> (a, World) pure

f :: Int -> IO Int

https://wiki.haskell.org/Introduction_to_IO

Pure functions and computations

f :: a -> M a

computations resulting in values

imperative code

pure function

side effect computations

running actions

Monadic Operations (3A) 42 Young Won Lim
3/9/19

getLine :: IO String

putStrLn :: String -> IO ()

randomRIO :: (Random a) => (a,a) -> IO a

Ordinary Haskell evaluation does not cause this execution to occur.

A value of type (IO a) is almost completely inert.

In fact, the only IO action which can really be said to run

in a compiled Haskell program is main.

https://wiki.haskell.org/Introduction_to_IO

The only running IO action

Monadic Operations (3A) 43 Young Won Lim
3/9/19

main :: IO ()

main = putStrLn "Hello, World!"

composing and chaining together IO actions

(>>) :: IO a -> IO b -> IO b

if x and y are IO actions, then (x >> y) is the action that performs x,

dropping the result, then performs y and returns its result.

main = putStrLn "Hello" >> putStrLn "World"

https://wiki.haskell.org/Introduction_to_IO

x >> y

Monadic Operations (3A) 44 Young Won Lim
3/9/19

x >>= f is the action that first performs the action x,

and captures its result, passing it to f,

which then computes a second action to be performed.

That action is then carried out, and its result is

the result of the overall computation.

main = putStrLn "Hello, what is your name?"

 >> getLine

 >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

https://wiki.haskell.org/Introduction_to_IO

x >>= y

Monadic Operations (3A) 45 Young Won Lim
3/9/19

turns a value into an IO action

which does nothing, and simply returns that value.

at the end of a chain of actions,

we may want to decide what to return ourselves,

rather than leaving it up to the last action in the chain.

return :: a -> IO a

https://wiki.haskell.org/Introduction_to_IO

return

Monadic Operations (3A) 46 Young Won Lim
3/9/19

main = do

putStrLn "Hello, what is your name?"

 name <- getLine

 putStrLn ("Hello, " ++ name ++ "!")

main = putStrLn "Hello, what is your name?"

 >> getLine

 >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

An action on its own on a line in a do-block will be executed,

v <- x will cause the action x to be run,

and the result bound to the variable v.

https://wiki.haskell.org/Introduction_to_IO

do-notation, v <- x

Monadic Operations (3A) 47 Young Won Lim
3/9/19

A common mistake is to put something other than an action

in the place of x, usually some other value.

If you want to make a variable binding inside a do-block

which doesn't involve running an action,

then you can use a line of the form let a = b,

which, like an ordinary let-expression

will define a to be the same as b,

but the definition scopes over the remainder of the do-block.

https://wiki.haskell.org/Introduction_to_IO

Variable binding v <- x

v <- x

let a = b

action x (monadic value)

non-action b

Monadic Operations (3A) 48 Young Won Lim
3/9/19

Note that there is no function:

unsafe :: IO a -> a

as this would defeat the referential transparency of Haskell --

applying unsafe to the same IO action might return

different values every time (not allowed in Haskell)

Most monads are actually rather unlike IO,

but they do share the similar concepts of bind and return.

https://wiki.haskell.org/Introduction_to_IO

Unsafe function

Monadic Operations (3A) 49 Young Won Lim
3/9/19

do

 x <- returningIO

 returningIO2 $ pureFunction x

no way to get the "Int" out of an "IO Int",

except to do something else in the IO Monad.

In monad terms, the above code desugars into

returningIO >>= (\x -> returningIO2 $ pureFunction x)

https://stackoverflow.com/questions/4235348/converting-io-int-to-int

Extracting Int from IO Int

Monadic Operations (3A) 50 Young Won Lim
3/9/19

returningIO >>= (\x -> returningIO2 $ pureFunction x)

The >>= operator (pronounced "bind")

does convert the "IO Int" into an "Int",

but it does not give that Int directly.

It will only pass that value to a function as an argument,

and that function must return another monadic value in "IO".

>>= :: IO a -> (a -> IO b) -> IO b

you can process the Int, but the results of doing so

never escape from the IO monad.

https://stackoverflow.com/questions/4235348/converting-io-int-to-int

No escape from a monad

Monadic Operations (3A) 51 Young Won Lim
3/9/19

Adding monad values

addM :: (Monad m, Num a) => m a -> m a -> m a

addM ma mb = do

 a <- ma

 b <- mb

 return (a + b)

addM ma mb =

 ma >>= \a ->

 mb >>= \b ->

 return (a + b)

addM ma mb =

 ma >>= (\a -> mb >>= (\b -> return (a + b)))

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 52 Young Won Lim
3/9/19

Using Identity monad instance

instance Monad Identity where

 return a = Identity a -- create an Identity value

 (Identity a) >>= f = f a -- apply f to a

addM (Identity 1) (Identity 2)

(Identity 1) >>= (\a -> (Identity 2) >>= (\b -> return (a + b)))

(\a -> (Identity 2) >>= (\b -> return (a + b)) 1

(Identity 2) >>= (\b -> return (1 + b))

(\b -> return (1 + b)) 2

return (1 + 2)

Identity 3

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 53 Young Won Lim
3/9/19

Using List monad instance

addM [1, 2] [3, 4]

[4,5,5,6]

addM [1, 2] [3, 4, 5]

[4,5,6,5,6,7]

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 54 Young Won Lim
3/9/19

Using Maybe instance

addM (Just 1) (Just 2)

Just 3

addM Nothing (Just 1)

Nothing >>= (\a -> (Just 1) >>= (\b -> return (a + b))) – immediately abort

Nothing

addM (Just 1) Nothing:

(Just 1) >>= (\a -> Nothing >>= (\b -> return (a + b)))

(\a -> Nothing >>= (\b -> return (a + b)) 1

Nothing >>= (\b -> return (1 + b)) – immediately abort

Nothing

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 55 Young Won Lim
3/9/19

Using IO instance

addM (return 1 :: IO Int) (return 2 :: IO Int)

3

f :: IO Int

add :: Num a => a -> a -> a

add a b = a + b … side effect free

add a b = a + b + f … side efffect monad

but compile error

Prelude Control.Monad.Trans.State> 3 + 4 + (return 5 :: IO Int)

<interactive>:36:1: error:

 • No instance for (Num (IO Int)) arising from a use of ‘+’

 • In the expression: 3 + 4 + (return 5 :: IO Int)

 In an equation for ‘it’: it = 3 + 4 + (return 5 :: IO Int)

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 56 Young Won Lim
3/9/19

Using IO instance

f :: IO Int

readLn : Read a => IO a

readLn : Read Int => IO Int

add a b = do

 c <- readLn

 print (a + b + c) -- not (a + b +c)

add 10 20

5

35

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 57 Young Won Lim
3/9/19

Using IO instance

in the case of IO, ST and friends,

the type system keeps effects isolated to some specific context.

It does not eliminate side effects,

making code referentially transparent that should not be,

but it does determine at compile time

what scope the effects are limited to.

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

f :: a -> M a

computations resulting in values

imperative code

pure function

side effect computations

running actions

effect
scope

Monadic Operations (3A) 58 Young Won Lim
3/9/19

Chaining

f2 :: IO ()

f2 = do

 a <- f

 print a

 b <- f

 print b

a handy way of expressing a sequence of effects:

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 59 Young Won Lim
3/9/19

Policies for chaining computations

A monad represents some policy for chaining computations.

Identity's policy is pure function composition,

Maybe's policy is function composition with failure propogation,

IO's policy is impure function composition and so on.

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

Monadic Operations (3A) 60 Young Won Lim
3/9/19

Monad Definition

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 fail :: String -> m a

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe a

IO a

ST a

State s a

m a

1) return

2) bind (>>=)

3) then (>>)

4) fail

Monadic Operations (3A) 61 Young Won Lim
3/9/19

Either Monad

a do block looks very much like imperative code

with hidden side effects.

The Either monadic code looks like

using functions that can throw exceptions.

data Either a b

used to represent a value which is either correct or an error;

the Left constructor is used to hold an error value

and the Right constructor is used to hold a correct value

data Either error_constructor correct_constructor

https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/12-State-Monad

Monadic Operations (3A) 62 Young Won Lim
3/9/19

Either Monad Constructors

data Either a b

the Left constructor : an error value

the Right constructor : a correct value

 let s = Left "foo" :: Either String Int

s Left "foo" -- error value

 let n = Right 3 :: Either String Int

n Right 3 -- correct value

:type s s :: Either String Int

:type n n :: Either String Int

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html

Monadic Operations (3A) 63 Young Won Lim
3/9/19

Either Monad and fmap

The fmap will ignore Left values,

but will apply the supplied function

to values contained in a Right:

let s = Left "foo" :: Either String Int

let n = Right 3 :: Either String Int

fmap (*2) s Left "foo" -- error value

fmap (*2) n Right 6 -- applied value

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html

Monadic Operations (3A) 64 Young Won Lim
3/9/19

Either Monad Example (1)

different error messages for different errors :

use Either to represent computations which might return

either an error message or a value:

myDiv3 :: Float -> Float -> Either String Float

myDiv3 x 0 = Left "Divison by zero"

myDiv3 x y = Right (x / y)

example3 x y =

 case myDiv3 x y of

 Left msg -> putStrLn msg -- error value

 Right q -> putStrLn (show q) -- correct value

http://www.randomhacks.net/2007/03/10/haskell-8-ways-to-report-errors/

Monadic Operations (3A) 65 Young Won Lim
3/9/19

Either Monad Example (2)

can combine computations

divSum3 :: Float -> Float -> Float -> Either String Float

divSum3 x y z = do

 xdy <- myDiv3 x y

 xdz <- myDiv3 x z

 return (xdy + xdz)

used to recover from multiple kinds of non-IO errors

division by zero

http://www.randomhacks.net/2007/03/10/haskell-8-ways-to-report-errors/

Young Won Lim
3/9/19

References (1)

[1] http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

[2] https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

[3] https://wiki.haskell.org/Polymorphism

[4] https://stackoverflow.com/questions/52058692/the-term-function-application-in-haskell

[5] https://ghc.haskell.org/trac/ghc/wiki/TypeApplication

[6] https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

[7] https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/12-
State-Monad

[8] https://wiki.haskell.org/Global_variables

[9] http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

[10] https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

[11] https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

[12] https://www.cs.hmc.edu/~adavidso/monads.pdf

[13] https://www.seas.upenn.edu/~cis552/11fa/lectures/monads2.html

[14] https://www.quora.com/What-is-an-IO-Monad

https://www.seas.upenn.edu/~cis552/11fa/lectures/monads2.html

Young Won Lim
3/9/19

References (2)

[15] https://wiki.haskell.org/Introduction_to_IO

[16] https://stackoverflow.com/questions/4235348/converting-io-int-to-int

[17] https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-
effects

[18] https://en.wikibooks.org/wiki/Haskell/Understanding_monads

[19] http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html

[20] http://www.randomhacks.net/2007/03/10/haskell-8-ways-to-report-errors/

Young Won Lim
3/9/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68

