
Young Won Lim
9/20/18

State & StateT Monads (9A)

Young Won Lim
9/20/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State & StateT
Monads (9A) 3 Young Won Lim

9/20/18

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

State & StateT
Monads (9A) 4 Young Won Lim

9/20/18

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

State Monad

execState

:: State s a state-passing computation to execute

-> s initial value

-> s final state

Evaluate a state computation with the given initial state and return the final state,

discarding the final value.

 execState m s = snd (runState m s)

mapState :: ((a, s) -> (b, s)) -> State s a -> State s b

Map both the return value and final state of a computation using the given function.

 runState (mapState f m) = f . runState m

withState :: (s -> s) -> State s a -> State s a

withState f m executes action m on a state modified by applying f.

 withState f m = modify f >> m

State & StateT
Monads (9A) 5 Young Won Lim

9/20/18

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

StateT Monad Transformer

newtype StateT s (m :: * -> *) a

A state transformer monad parameterized by:

 s - The state.

 m - The inner monad.

The return function leaves the state unchanged,

while >>= uses the final state of the first computation

as the initial state of the second.

Constructors

StateT (s -> m (a, s))

State & StateT
Monads (9A) 6 Young Won Lim

9/20/18

runStateT :: StateT s m a -> s -> m (a, s)

evalStateT :: Monad m => StateT s m a -> s -> m a

Evaluate a state computation with the given initial state and return the final value,

discarding the final state.

 evalStateT m s = liftM fst (runStateT m s)

execStateT :: Monad m => StateT s m a -> s -> m s

Evaluate a state computation with the given initial state and return the final state,

discarding the final value.

 execStateT m s = liftM snd (runStateT m s)

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

StateT Monad Transformer

State & StateT
Monads (9A) 7 Young Won Lim

9/20/18

mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b

Map both the return value and final state of a computation using the given function.

 runStateT (mapStateT f m) = f . runStateT m

withStateT :: (s -> s) -> StateT s m a -> StateT s m a

withStateT f m executes action m on a state modified by applying f.

 withStateT f m = modify f >> m

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

StateT Monad Transformer

Young Won Lim
9/20/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

