
Young Won Lim
9/8/18

Control Monad (9A)

Young Won Lim
9/8/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Control Monad (9A) 3 Young Won Lim
9/8/18

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Control Monad (9A) 4 Young Won Lim
9/8/18

sequence is a function which takes

a list of computations of the same type,

and builds from them a computation

which will run each in turn and

produce a list of the results:

sequence :: (Monad m) => [m a] -> m [a]

sequence [] = return []

sequence (x:xs) = do v <- x

 vs <- sequence xs

 return (v:vs)

https://wiki.haskell.org/Monads_as_computation

sequence

Control Monad (9A) 5 Young Won Lim
9/8/18

sequence :: (Monad m) => [m a] -> m [a]

sequence [] = return []

sequence (x:xs) = do v <- x

 vs <- sequence xs

 return (v:vs)

sequence :: (Monad m) => [m a] -> m [a]

sequence [] = return []

sequence (x:xs) = x >>= \v -> sequence xs >>= \vs -> return (v:vs)

https://wiki.haskell.org/Monads_as_computation

sequence

State Monad (6B)
Methods 6 Young Won Lim

9/8/18

sequence :: Monad m => [m a] -> m [a]

evaluate each action in the sequence from left to right,

and collect the results.

sequence [(> 4), (< 10), odd] 7

[True, True, True]

sequence [fmap (*2) , fmap (*3) , fmap (*4)] (Just 2)

[Just 4,Just 6,Just 8]

sequence [((*2) <$>) , ((*3) <$>) , ((*4) <$>)] (Just 2)

[Just 4,Just 6,Just 8]

http://derekwyatt.org/2012/01/25/haskell-sequence-over-functions-explained/

sequence

State Monad (6B)
Methods 7 Young Won Lim

9/8/18

sequence :: (Monad m) => [m a] -> m [a]

sequence [] = return []

sequence (x:xs) = do v <- x

 vs <- sequence xs

 return (v:vs)

without the do-notation:

sequence :: (Monad m) => [m a] -> m [a]

sequence [] = return []

sequence (x:xs) = x >>= \v -> sequence xs >>= \vs -> return (v:vs)

(one can start to see why do-notation might be desirable!)

http://derekwyatt.org/2012/01/25/haskell-sequence-over-functions-explained/

Sequence

It's a function which takes a list of

computations of the same type,

and builds from them a computation

which will run each in turn

and produce a list of the results:

State Monad (6B)
Methods 8 Young Won Lim

9/8/18

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= f = Nothing

(Just x) >>= f = f x

...while sequence can be defined like this:

sequence :: [m a] -> m [a]

sequence [] = return []

sequence (m:ms) = m >>= (\x -> sequence ms >>= (\xs -> return $ x:xs))

https://www.reddit.com/r/haskellquestions/comments/6xk5hv/the_sequence_function/

sequence

Control Monad (9A) 9 Young Won Lim
9/8/18

In a parsing monad, we might pass it a list of parsers,

and get back a parser which parses its input using each in turn.

In the IO monad, a simple example might be the following:

main = sequence [getLine, getLine] >>= print

which gets two lines of text from the user,

and then prints the list.

Since lists are lazy in Haskell,

this gives us a sort of primordial loop

from which most other kinds of loops can be built.

https://wiki.haskell.org/Monads_as_computation

sequence

Control Monad (9A) 10 Young Won Lim
9/8/18

a for-each loop is something which performs some action

based on each element of a list.

think a function with the type:

collect the results of each iteration

We can write this with sequence and map:

forM :: (Monad m) => [a] -> (a -> m b) -> m [b]

forM xs f = sequence (map f xs)

we apply the function to each element of the list

to construct the action for that iteration,

and then sequence the actions together into a single computation.

https://wiki.haskell.org/Monads_as_computation

forM

Control Monad (9A) 11 Young Won Lim
9/8/18

forM :: (Monad m) => [a] -> (a -> m b) -> m [b]

forM xs f = sequence (map f xs)

main = forM [1..10] $ \x -> do

 putStr "Looping: "

 print x

Since in this, and many other cases,

the loop body doesn't produce a particularly interesting result,

there are variants of sequence and forM

called sequence_and forM_

which simply throw the results away as they run each of the actions.

https://wiki.haskell.org/Monads_as_computation

forM

Control Monad (9A) 12 Young Won Lim
9/8/18

sequence_ :: (Monad m) => [m a] -> m ()

sequence_ [] = return ()

sequence_ (x:xs) = x >> sequence_ xs

forM_ :: (Monad m) => [a] -> (a -> m b) -> m ()

forM_ xs f = sequence_ (map f xs)

https://wiki.haskell.org/Monads_as_computation

Sequence_, forM_

Control Monad (9A) 13 Young Won Lim
9/8/18

Sometimes we only want a computation to happen

when a given condition is true.

when :: (Monad m) => Bool -> m () -> m ()

when p x = if p then x else return ()

Remember that return () is a no-op,

so running this computation will run x

when the condition is true,

and will do nothing at all when the condition fails.

https://wiki.haskell.org/Monads_as_computation

when

Control Monad (9A) 14 Young Won Lim
9/8/18

Another extremely common thing to do is

to construct a computation which performs another computation and

then applies a function to the result.

This can be accomplished by using the liftM function:

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM f x = do v <- x

 return (f v)

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM f x = return . f =<< x

Where (=<<) is just bind with its parameters flipped.

https://wiki.haskell.org/Monads_as_computation

liftM

Control Monad (9A) 15 Young Won Lim
9/8/18

This is also generalised by liftM2, liftM3, ...

to running more than one computation

before applying a function to the results:

liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c

liftM2 f x y = do v <- x

 w <- y

 return (f v w)

https://wiki.haskell.org/Monads_as_computation

liftM2

Control Monad (9A) 16 Young Won Lim
9/8/18

It's possible to rewrite sequence

in terms of liftM2, return, and a fold over the list:

sequence :: (Monad m) => [m a] -> m [a]

sequence xs = foldr (liftM2 (:)) (return []) xs

sequence_ :: (Monad m) => [m a] -> m ()

sequence_ xs = foldr (>>) (return ()) xs

Anyway, these are just a few of the simpler examples

to give a taste of what sorts of control structures you get for free

by defining a combinator library as a monad.

https://wiki.haskell.org/Monads_as_computation

sequence via liftM2, return, fold

Young Won Lim
9/8/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

