Copyright (c) 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Properties of a Minimum Phase System

Lowest Time Delay

Group Delay

Energy Compaction

Invertible

Min Phase Filterflat responseEqualizerflat responseflat responseincorrect phase response

Minimum Phase System

Stable Causal System

All its poles are in the left half of the s plane

Minimum Phase System Properties (1)

Minimum Phase System

If an amplitude response is known

the minimum phase response can be determined uniquely

$$A(\omega) = |H(j\omega)| \qquad \qquad 0 \le \omega < \infty$$

 $\Phi_{\min}(\omega) = \arg\{H(j\omega)\}$

Non-Minimum Phase System

With the same amplitude response

The non-minimum phase response is always greater

some / all zeros in the right half s plane

$$A(\omega) = |H(j\omega)| \qquad 0 \le \omega < \infty$$

$$\Phi(\omega) \geq \Phi_{\min}(\omega)$$

Minimum Phase System Properties (2)

Example

Non-Minimum Phase System

$$H(s) = \frac{1-2s}{1+4s} \longrightarrow +0.5$$

 $\frac{1+j2\omega}{1+j4\omega} = \frac{1+j2\omega}{1+j4\omega} \cdot \frac{1-j4\omega}{1-j4\omega}$ $= \frac{(1+8\omega^2) - j2\omega}{1+16\omega^2}$ $\Phi(\omega) = -\tan^{-1}\left(\frac{2\omega}{1+8\omega^2}\right)$

$$\frac{1-j2\omega}{1+j4\omega} = \frac{1-j2\omega}{1+j4\omega} \cdot \frac{1-j4\omega}{1-j4\omega}$$
$$= \frac{(1-8\omega^2) - j6\omega}{1+16\omega^2}$$
$$\Phi(\omega) = -\tan^{-1}\left(\frac{6\omega}{1+8\omega^2}\right)$$

Example - Decomposition

Example - All Pass Filter

$$H_{all}(s) = \frac{1-2s}{1+2s}$$

Flat Magnitude

$$\frac{\left|1-j2\omega\right|}{1+j2\omega} = \frac{\left|1-j2\omega\right|}{\left|1+j2\omega\right|}$$
$$= \frac{\sqrt{1+4\omega^2}}{\sqrt{1+4\omega^2}} = 1$$

$$\left|H_{all}(j\omega)\right| = \frac{\sqrt{1+4\omega^2}}{\sqrt{1+4\omega^2}} = 1$$

A Pure Phase Shifter

$$\frac{1-j2\omega}{1+j2\omega} = \frac{1-j2\omega}{1+j2\omega} \cdot \frac{1-j2\omega}{1-j2\omega}$$
$$= \frac{(1-4\omega^2) - j4\omega}{1+4\omega^2}$$

$$arg\{H_{all}(j\omega)\} = -\tan^{-1}\left(\frac{4\omega}{1-4\omega^2}\right)$$

$$H(s) = \frac{1-2s}{1+4s} \cdot \frac{1+2s}{1+2s}$$
$$= \frac{1+2s}{1+4s} \cdot \frac{1-2s}{1+2s}$$
$$= H_{min}(s) \cdot H_{all}(s)$$

All Pass Filter – Energy Compaction

The signal energy until t_0 of the minimum phase

≥ any other causal signal with the same magnitude response

Thus minimum phase signals

maximally concentrated toward time 0 when compared against all causal signals having the same magnitude response

minimum phase signals minimum delay signals

Properties of a Minimum Phase System

Properties of a Minimum Phase System

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] http://www.libinst.com/tpfd.htm
- [4] K.Shin, J.K. Hammond, "Fundamentals of Signal Processing for Sound and Vibration Engineers"
- [5] www.radiolab.com.au/DesignFile/DN004.pdf