
1 Young Won Lim
10/23/19

Monad P3 : ST Monad Methods (3B)

2 Young Won Lim
10/23/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

ST Monad Methods (3B) 3 Young Won Lim
10/23/193

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

STRef Monad Overview
(3C)

4 Young Won Lim
10/23/19

creating a reference in one ST computation,

It cannot be used in another ST computation

We don't want to allow this because of thread-safety

no ST computation should be allowed to assume that

the initial internal environment contains any specific references.

More concretely, we want the following code to be invalid:

Example: Bad ST code

 let v = runST (newSTRef True)

 in runST (readSTRef v)

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Thread safety constraint

STRef Monad Overview
(3C)

5 Young Won Lim
10/23/19

Example: Bad ST code

 let v = runST (newSTRef True)

 in runST (readSTRef v)

newSTRef :: a -> ST s (STRef s a)

runST :: forall a. (forall s. ST s a) -> a

readSTRef :: STRef s a -> ST s a

runST :: forall a. (forall s. ST s a) -> a

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Thread safety constraint

STRef s True

if s in the first parameter
it cannot in the second
scope constraint

reference in one ST computation
cannot be used
in another ST computation
thread safety constrain

STRef Monad Overview
(3C)

6 Young Won Lim
10/23/19

The effect of the rank-2 polymorphism in runST's type

is to constrain the scope of the type variable s

to be within the first parameter

runST :: forall a. (forall s. ST s a) -> a

if the type variable s appears in the first parameter

it cannot also appear in the second.

Example: Briefer bad ST code

... runST (newSTRef True) ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Scope constraint

STRef Monad Overview
(3C)

7 Young Won Lim
10/23/19

runST :: forall a. (forall s. ST s a) -> a

newSTRef :: a -> ST s (STRef s a)

Example: The compiler's type checking stage

newSTRef True :: forall s. ST s (STRef s Bool)

(forall s. ST s (STRef s Bool)) -> STRef s Bool

The importance of the forall in the first bracket is

that we can change the name of the s.

Example: A type mismatch!

(forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Type checking

STRef Monad Overview
(3C)

8 Young Won Lim
10/23/19

giving the variable a different label :

as in mathematics, saying x. x > 5 ∀x. x > 5

is precisely the same as saying y. y > 5 ;∀x. x > 5

because the forall does not scope over the return type of runST,

we don't rename the s there as well.

runST :: forall a. (forall s. ST s a) -> a

But suddenly, we've got a type mismatch!

The result type of the ST computation in the first parameter

must match the result type of runST, but now it doesn't!

(forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

A type mismatch

STRef Monad Overview
(3C)

9 Young Won Lim
10/23/19

let ref = runST $ newSTRef (4 :: Int)

newSTRef :: a -> ST s (STRef s a)

newSTRef Int :: ST s (STRef s Int)

runST :: (forall s. ST s a) -> a

runST :: (forall s. ST s (STRef s Int)) -> (STRef s Int)

runST :: (forall s. ST s a) -> a

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

The scope of s in forall s.

type variable s should not escape its scope

cannot match type a with STRef s a

type variable s‘s scope

STRef Monad Overview
(3C)

10 Young Won Lim
10/23/19

Example: Bad ST code

 let v = runST (newSTRef True) ……. the 1st ST computation (runST)

 in runST (readSTRef v) …………….. the 2nd ST computation (runST)

no ST computation should be allowed to assume that

the initial internal environment contains any specific references.

the above code is invalid:

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Bad ST code 1 – no reference passing

runST :: forall a. (forall s. ST s a) -> a

newSTRef :: a -> ST s (STRef s a)

readSTRef :: STRef s a -> ST s a

STRef Monad Overview
(3C)

11 Young Won Lim
10/23/19

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Bad ST code 1 – no scope escape

type variable s should not escape its scope

cannot match type a with STRef s a

 let v = runST (newSTRef True)

 in runST (readSTRef v)

newSTRef :: a -> ST s (STRef s a)

newSTRef True :: ST s (STRef s Bool)

runST :: forall a. (forall s. ST s a) -> a

runST :: forall a. (forall s. ST s (STRef s Bool)) -> (STRef s Bool)

runST (newSTRef True) :: STRef s Bool

v :: STRef s Bool

 readSTRef :: STRef s a -> ST s a

readSTRef v :: ST s Bool

runST :: forall a. (forall s. ST s a) -> a

runST (newSTRef v) :: Bool

STRef Monad Overview
(3C)

12 Young Won Lim
10/23/19

let ref = runST $ newSTRef (4 :: Int)

newSTRef :: a -> ST s (STRef s a)

newSTRef 4 :: ST s (STRef s Int)

runST :: (forall s. ST s a) -> a

runST :: (forall s. ST s (STRef s Int)) -> (STRef s Int)

runST cannot extract any reference of the type (STRef s a)

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Bad ST code 2

type variable s should not escape its scope

cannot match type a with STRef s a

STRef Monad Overview
(3C)

13 Young Won Lim
10/23/19

Attempt to keep an STRef around to pass to pure code:
GHCi> import Control.Monad.ST
GHCi> import Data.STRef
GHCi> let ref = runST $ newSTRef (4 :: Int)

<interactive>:125:19:
 Couldn't match type ‘a’ with ‘STRef s Int’
 because type variable ‘s’ would escape its scope
 This (rigid, skolem) type variable is bound by
 a type expected by the context: ST s a
 at <interactive>:125:11-37
 Expected type: ST s a
 Actual type: ST s (STRef s Int)
 Relevant bindings include ref :: a (bound at <interactive>:125:5)
 In the second argument of ‘($)’, namely ‘newSTRef (4 :: Int)’
 In the expression: runST $ newSTRef (4 :: Int)

“because type variable s would escape its scope"

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Bad ST code 2 – error messages

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a

Read the value of an STRef

newSTRef (4 :: Int)
:: ST s (STRef s Int)

runST $ newSTRef (4 :: Int)
:: STRef s Int

STRef Monad Overview
(3C)

14 Young Won Lim
10/23/19

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1

Same as >>=, but with the arguments interchanged.

(>>=) :: forall a b. m a -> (a -> m b) -> m b infixl 1

https://www.stackage.org/haddock/lts-13.27/base-4.12.0.0/Control-Monad.html#v:-62--62--61-

=<< and >>=

STRef Monad Overview
(3C)

15 Young Won Lim
10/23/19

let x = runST $ readSTRef =<< runST (newSTRef (4 :: Int))

1. newSTRef :: a -> ST s (STRef s a)
newSTRef (4 :: Int) :: ST s (STRef s Int)

2. runST :: (forall s. ST s a) -> a

ST s (STRef s Int)) -> (STRef s Int)

runST(newSTRef (4 :: Int)) :: (STRef s Int)

3. readSTRef :: STRef s a -> ST s a
runST :: (forall s. ST s a) -> a
readSTRef =<< runST (newSTRef (4 :: Int)) :: (ST s Int)

4. runST :: (forall s. ST s a) -> a
(runST $ readSTRef =<< runST (newSTRef (4 :: Int))) :: Int

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Bad ST code 3 – not the same s

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a

Read the value of an STRef

newSTRef (4 :: Int)
:: ST s (STRef s Int)

runST $ newSTRef (4 :: Int)
:: STRef s Int

The 's' from each computation
are necessarily not the same.

STRef Monad Overview
(3C)

16 Young Won Lim
10/23/19

let x = runST $ readSTRef =<< runST (newSTRef (4 :: Int))

1. newSTRef :: a -> ST s (STRef s a)
newSTRef (4 :: Int) :: ST s (STRef s Int)

2. runST :: (forall s. ST s a) -> a

ST s1 (ST s (STRef s Int)) -> (ST s (STRef s Int))

runST(newSTRef (4 :: Int)) :: (ST s (STRef s Int))

3. readSTRef :: STRef s a -> ST s a
STRef s1 Int -> ST s1 Int

Couldn't match type ‘STRef s1 Int’ with ‘ST s (STRef s a)’

Expected type: ST s1 (ST s (STRef s a))
Actual type: ST s1 (STRef s1 Int)

The 's' from each computation are necessarily not the same.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Bad ST code 3

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a

Read the value of an STRef

newSTRef (4 :: Int)
:: ST s (STRef s Int)

runST $ newSTRef (4 :: Int)
:: STRef s Int

STRef Monad Overview
(3C)

17 Young Won Lim
10/23/19

Attempt to feed an STRef from one ST computation to another:
GHCi> import Control.Monad.ST
GHCi> import Data.STRef
GHCi> let x = runST $ readSTRef =<< runST (newSTRef (4 :: Int))

<interactive>:129:38:
 Couldn't match type ‘STRef s1 Int’ with ‘ST s (STRef s a)’
 Expected type: ST s1 (ST s (STRef s a))
 Actual type: ST s1 (STRef s1 Int)
 Relevant bindings include x :: a (bound at <interactive>:129:5)
 In the first argument of ‘runST’, namely ‘(newSTRef (4 :: Int))’
 In the second argument of ‘(=<<)’, namely
 ‘runST (newSTRef (4 :: Int))’

The 's' from each computation are necessarily not the same.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Bad ST code 3 – error messages

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a

Read the value of an STRef

newSTRef (4 :: Int)
:: ST s (STRef s Int)

runST $ newSTRef (4 :: Int)
:: STRef s Int

STRef Monad Overview
(3C)

18 Young Won Lim
10/23/19

The s keeps objects inside the ST monad

from leaking to the outside of the ST monad.

-- This is an error... but let's pretend for a moment...

let a = runST $ newSTRef (15 :: Int)

 b = runST $ writeSTRef a 20

 c = runST $ readSTRef a

in b `seq` c

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

Bad ST Code 4

STRef Monad Overview
(3C)

19 Young Won Lim
10/23/19

let a = runST $ newSTRef (15 :: Int)

 b = runST $ writeSTRef a 20

 c = runST $ readSTRef a

in b `seq` c

this is a type error

we don't want STRef to leak outside the original computation!

the extra s in runST causes a type error

runST :: (forall s . ST s a) -> a

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

Bad ST Code 4

STRef Monad Overview
(3C)

20 Young Won Lim
10/23/19

runST :: (forall s . ST s a) -> a

the s on the computation that you're performing

has to have no constraints on it.

So when you try to evaluate a

a = runST (newSTRef (15 :: Int) :: forall s. ST s (STRef s Int))

a :: STRef s Int,

this is wrong since the s has "escaped"

outside of the forall in runST.

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

Bad ST Code 4

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a

Read the value of an STRef

newSTRef (4 :: Int)
:: ST s (STRef s Int)

runST $ newSTRef (4 :: Int)
:: STRef s Int

STRef Monad Overview
(3C)

21 Young Won Lim
10/23/19

runST :: (forall s . ST s a) -> a

a = runST (newSTRef (15 :: Int) :: forall s. ST s (STRef s Int))

a :: STRef s Int,

this is wrong since the s has "escaped"

outside of the forall in runST.

type variables (e.g. s) always have to

appear on the inside of a forall,

Haskell allows implicit forall quantifiers everywhere.

There's simply no rule that allows you to to meaningfully

figure out the return type of a.

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

Bad ST Code 4

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a

Read the value of an STRef

newSTRef (4 :: Int)
:: ST s (STRef s Int)

runST $ newSTRef (4 :: Int)
:: STRef s Int

STRef Monad Overview
(3C)

22 Young Won Lim
10/23/19

Another example with forall:

To clearly show why you can't allow things to escape a forall,

here is a simpler example:

f :: (forall a. [a] -> b) -> Bool -> b

f g flag =

 if flag

 then g "abcd"

 else g [1,2]

> :t f length

f length :: Bool -> Int

> :t f id

-- error --

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

Bad ST Code 4

STRef Monad Overview
(3C)

23 Young Won Lim
10/23/19

ST Monad Methods (3B) 24 Young Won Lim
10/23/1924

The IO monad and the ST monad are actually the same monad.

And an IORef is actually an STRef, and so on.

So it would not so be useful to be able to write code

and use it in both monads.

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

Code for both IO and ST

ST Monad Methods (3B) 25 Young Won Lim
10/23/1925

the phantom s type in the type signatures.

to run an ST block, it needs to work for all possible s:

runST :: (forall s. ST s a) -> a

All the mutable stuff has s in the type as well, STRef s a

runST :: (forall s. ST s (STRef s a)) -> STRef s a

to return mutable stuff out of the ST monad

will be ill-typed.

data STRef s a = STRef (MutVar# s a)

newtype ST s a = ST (State# s -> (# State# s, a #))

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

s in ST & STRef

ST Monad Methods (3B) 26 Young Won Lim
10/23/1926

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype ST s a = ST (State# s -> (# State# s, a #))

IO is isomorphic to ST RealWorld.

ST works under the exact same principles as IO

mutable references in the ST monad

are possible through threading state

https://haskell-lang.org/tutorial/primitive-haskell

ST vs. IO Monad

STRef Monad Overview
(3C)

27 Young Won Lim
10/23/19

newSTRef :: a -> ST s (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

newSTRef init = ST $ \s1# -> (# s2#, STRef var# #)

readSTRef (STRef var#) = ST $ \s2# -> (# State# s3#, val #)

writeSTRef (STRef var#) val = ST $ \s3# -> (# s4#, () #)

STRef var# :: STRef s a

var# :: MutVar# s a

data STRef s a = STRef (MutVar# s a)

newtype ST s a = ST (State# s -> (# State# s, a #))

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Mutable reference interface

* memorization purpose

mutable references in the ST monad

are possible through threading state

s1#, s2#, s3#, …

STRef Monad Overview
(3C)

28 Young Won Lim
10/23/19

STRef Methods

data STRef a A mutable variable in the IO monad

newSTRef :: a -> ST s (STRef s a)
Build a new STRef

readSTRef :: STRef s a -> ST s a
Read the value of an STRef

writeSTRef :: STRef s a -> a -> ST s ()
Write a new value into an STRef

modifySTRef :: STRef s a -> (a -> a) -> ST s ()
Mutate the contents of an STRef.

modifySTRef‘ :: STRef s a -> (a -> a) -> ST s ()
Strict version of modifySTRef

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-IORef.html

0

1

2

3 4(+1)

4 5

0

33

(+1)

1

0

1

old
STRef s a

new
STRef s a

ST s (STRef s a)
ST s a
ST s ()

STRef Monad Overview
(3C)

29 Young Won Lim
10/23/19

data STRef s a

a value of type STRef s a is a mutable variable in state thread s,

containing a value of type a

>>> :{ … multi-line expression

runST (do

 ref <- newSTRef "hello"

 x <- readSTRef ref

 writeSTRef ref (x ++ "world")

 readSTRef ref)

:}

"helloworld" … result

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-STRef.html

STRef methods example (1)

STRef Monad Overview
(3C)

30 Young Won Lim
10/23/19

modifySTRef :: STRef s a -> (a -> a) -> ST s ()

Mutate the contents of an STRef

>>> :{ … multi-line expression

runST (do

 ref <- newSTRef ""

 modifySTRef ref (const "world")

 modifySTRef ref (++ "!")

 modifySTRef ref ("Hello, " ++)

 readSTRef ref)

:}

"Hello, world!" … result

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-STRef.html

STRef methods example (2)

STRef Monad Overview
(3C)

31 Young Won Lim
10/23/19

ST Monad Methods (3B) 32 Young Won Lim
10/23/1932

stToIO :: ST RealWorld a -> IO a

stToIO (ST m) = IO m

ioToST :: IO a -> ST RealWorld a

ioToST (IO m) = (ST m)

unsafeSTToIO :: ST s a -> IO a

unsafeSTToIO (ST m) = IO (unsafeCoerce# m)

unsafeIOToST :: IO a -> ST s a

unsafeIOToST (IO m) = ST $ \ s -> (unsafeCoerce# m) s

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

stToIO related methods (1)

(ST m)

(IO m)

(pattern matching)

ST Monad Methods (3B) 33 Young Won Lim
10/23/1933

stToIO :: ST RealWorld a -> IO a

stToIO (ST m) = IO m

m :: State# s -> (# State# s, a #)

ioToST :: IO a -> ST RealWorld a

ioToST (IO m) = (ST m)

newtype ST s a = ST (State# s -> (# State# s, a #))

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype ST s a = ST (State# s -> (# State# s, a #))

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

stToIO related methods (1)

ST Monad Methods (3B) 34 Young Won Lim
10/23/1934

The safe versions must start in the IO monad

● cannot obtain an ST RealWorld from runST)

● switch between the IO context and a ST RealWorld context.

● safe because ST RealWorld is basically the same thing as IO

The unsafe versions can start anywhere

● runST can be called anywhere

● switch between an arbitrary ST monad and the IO monad

● Using runST from a pure context and then doing a unsafeIOToST

● within the state monad is basically

equivalent to using unsafePerformIO.

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

stToIO related methods (2) – safe and unsafe

stToIO :: ST RealWorld a -> IO a

ioToST :: IO a -> ST RealWorld a

unsafeIOToST :: IO a -> ST s a

unsafeSTToIO :: ST s a -> IO a

ST Monad Methods (3B) 35 Young Won Lim
10/23/1935

At least, it will be ill-typed if you use runST.

notice that ioToST gives you an ST RealWorld a.

roughly speaking, IO x ≈ ST RealWorld x.

but runST won't accept IO x ≈ ST RealWorld x as input.

so you can't use runST to run I/O.

The ioToST gives you a type that cannot be used with runST.

But unsafeIOToST gives you a type that works just fine with runST.

At that point, you have basically implemented unsafePerformIO:

unsafePerformIO = runST . ioToST

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

stToIO related methods (3) – ioToST

stToIO :: ST RealWorld a -> IO a

ioToST :: IO a -> ST RealWorld a

unsafeIOToST :: IO a -> ST s a

unsafeSTToIO :: ST s a -> IO a

runST :: (forall s. ST s a) -> a

ST Monad Methods (3B) 36 Young Won Lim
10/23/1936

The unsafeSTToIO allows you

to get mutable stuff out of one ST block,

and potentially into another:

foobar = do

 v <- unsafeSTToIO (newSTRef 42)

 let w = runST (readSTRef v)

 let x = runST (writeSTRef v 99)

 print w

Because the thing is, we've got three ST actions here,

which can happen in absolutely any order.

Will the readSTRef happen before or after the writeSTRef?

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

stToIO related methods (4) – escaping example

unsafeIOToST :: IO a -> ST s a

unsafeSTToIO :: ST s a -> IO a

newSTRef :: a -> ST s (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

runST :: forall a. (forall s. ST s a) -> a

v :: STRef s a

ST Monad Methods (3B) 37 Young Won Lim
10/23/1937

[Actually, in this example, the write never happens,

because we don't "do" anything with x.

But if I pass x to some distant and unrelated part of the code,

and if that code happens to inspect (evaluate) it,

suddenly our I/O operation does something different.

Pure code shouldn't be able to affect mutable stuff like that!]

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

stToIO related methods (5) – triggering IO operations

ST Monad Methods (3B) 38 Young Won Lim
10/23/1938

ST Monad Methods (3B) 39 Young Won Lim
10/23/1939

instance Monad (ST s) where

 {-# INLINE (>>=) #-}

 (>>) = (*>)

 (ST m) >>= k

 = ST (\ s ->

 case (m s) of { (# new_s, r #) ->

 case (k r) of { ST k2 ->

 (k2 new_s) }})

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

ST Monad – source codes

instance Functor (ST s) where

 fmap f (ST m) = ST $ \ s ->

 case (m s) of { (# new_s, r #) ->

 (# new_s, f r #) }

instance Applicative (ST s) where

 {-# INLINE pure #-}

 {-# INLINE (*>) #-}

 pure x = ST (\ s -> (# s, x #))

 m *> k = m >>= \ _ -> k

 (<*>) = ap

 liftA2 = liftM2

STRef Monad Overview
(3C)

40 Young Won Lim
10/23/19

{-# INLINE runST #-}

-- | Return the value computed by a state transformer computation.

-- The @forall@ ensures that the internal state used by the 'ST'

-- computation is inaccessible to the rest of the program.

runST :: (forall s. ST s a) -> a

runST (ST st_rep) = case runRW# st_rep of (# _, a #) -> a

-- See Note [Definition of runRW#] in GHC.Magic

data STRef s a = STRef (MutVar# s a)

newtype ST s a = ST (State# s -> (# State# s, a #))

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.ST.html#ST

runST (1)

STRef Monad Overview
(3C)

41 Young Won Lim
10/23/19

runST :: (forall s. ST s a) -> a

runST (ST st_rep) = case runRW# st_rep of (# _, a #) -> a

st_rep :: State# s -> (# State# s, a #)

runRW# st_rep :: (# State# RealWorld, a #)

(# _, a #) :: (# State# RealWorld, a #)

runRW# :: (State# RealWorld -> o) -> o * memorization purpose

data STRef s a = STRef (MutVar# s a)

newtype ST s a = ST (State# s -> (# State# s, a #))

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.ST.html#ST

runST (2)

(ST st_rep) (pattern matching)

STRef Monad Overview
(3C)

42 Young Won Lim
10/23/19

-- | Apply a function to a 'State# RealWorld' token. When manually applying

-- a function to `realWorld#`, it is necessary to use `NOINLINE` to prevent

-- semantically undesirable floating. `runRW#` is inlined, but only very late

-- in compilation after all floating is complete.

-- 'runRW#' is representation polymorphic: the result may have a lifted or

-- unlifted type.

runRW# :: forall (r :: RuntimeRep) (o :: TYPE r).

 (State# RealWorld -> o) -> o

http://hackage.haskell.org/package/ghc-prim-0.5.3/docs/src/GHC.Magic.html#runRW%23

runRW# (1)

STRef Monad Overview
(3C)

43 Young Won Lim
10/23/19

-- See Note [runRW magic] in MkId

#if !defined(__HADDOCK_VERSION__)

runRW# m = m realWorld#

#else

runRW# = runRW# -- The realWorld# is too much for haddock

#endif

{-# NOINLINE runRW# #-}

-- This is inlined manually in CorePrep

http://hackage.haskell.org/package/ghc-prim-0.5.3/docs/src/GHC.Magic.html#runRW%23

runRW# (2)

STRef Monad Overview
(3C)

44 Young Won Lim
10/23/19

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

data RuntimeRep

GHC maintains a property that the kind of all inhabited types

(as distinct from type constructors or type-level data)

tells us the runtime representation of values of that type.

This datatype encodes the choice of runtime value.

Note that TYPE is parameterised by RuntimeRep;

this is precisely what we mean by the fact

that a type's kind encodes the runtime representation.

http://hackage.haskell.org/package/ghc-prim-0.5.3/docs/src/GHC.Magic.html#runRW%23

TYPE, RuntimeRep (1)

STRef Monad Overview
(3C)

45 Young Won Lim
10/23/19

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

data RuntimeRep

For boxed values (that is, values that are represented by a pointer),

a further distinction is made,

between lifted types (that contain), ⊥),

and unlifted ones (that don't).

http://hackage.haskell.org/package/ghc-prim-0.5.3/docs/src/GHC.Magic.html#runRW%23

TYPE, RuntimeRep (2)

STRef Monad Overview
(3C)

46 Young Won Lim
10/23/19

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

data RuntimeRep

VecRep VecCount VecElem a SIMD vector type

TupleRep [RuntimeRep] An unboxed tuple of the given reps

SumRep [RuntimeRep] An unboxed sum of the given reps

LiftedRep lifted; represented by a pointer

UnliftedRep unlifted; represented by a pointer

IntRep signed, word-sized value

WordRep unsigned, word-sized value

Int64Rep signed, 64-bit value (on 32-bit only)

Word64Rep unsigned, 64-bit value (on 32-bit only)

AddrRep A pointer, but not to a Haskell value

FloatRep a 32-bit floating point number

DoubleRep a 64-bit floating point numbe

http://hackage.haskell.org/package/ghc-prim-0.5.3/docs/src/GHC.Magic.html#runRW%23

TYPE, RuntimeRep (3)

ST Monad Methods (3B) 47 Young Won Lim
10/23/1947

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47

