
1 Young Won Lim
10/31/19

Monad P3 : ST Monad Basics (3A)

2 Young Won Lim
10/31/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

ST Monad Basics (3A) 3 Young Won Lim
10/31/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

ST Monad Basics (3A) 4 Young Won Lim
10/31/19

data ST s a the strict state-transformer monad

A computation of type ST s a

 transforms an internal state indexed by s

 returns a value of type a.

updated state s

returned result type a

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

Transforms a state and returns a value

ST Monad Basics (3A) 5 Young Won Lim
10/31/19

data ST s a

For mutability,

Data.STRef provides STRefs.

Data.Array.ST provides STArrays and STUArrays.

these allow programmers to produce imperative code

while still keeping all the safety that pure code provides.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Mutable Reference Types

ST Monad Basics (3A) 6 Young Won Lim
10/31/19

When it may be impractical to write functional code,

mutable variable of the type STRef s a enables the followings

● a variable is directly updated,

rather than a new value is formed and

passed to the next iteration of the function.

● memory modification in place is also possible

while maintaining the purity of a function by using runST

functions written using the ST monad

appear completely pure to the rest of the program.

https://en.wikipedia.org/wiki/Haskell_features#ST_monad

Imperative code is enabled

ST Monad Basics (3A) 7 Young Won Lim
10/31/19

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Side effects confined

data ST s a

ST monad code can have internal side effects

● destructively updating mutable variables and arrays,

● confining these effects inside the monad.

ST Monad Methods (3B) 8 Young Won Lim
10/31/198

data STRef s a

mutable references in the (strict) ST monad.

a value of type STRef s a is

a mutable variable in state thread s,

containing a value of type a

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-STRef.html

Mutable Reference Type

ST Monad Methods (3B) 9 Young Won Lim
10/31/199

STRef s a mutable reference enables

in place modifications of the variable n

● possible by using the type STRef s a

● would be considered asa side effect

● carried out in a safe and deterministic way

while preserving the functional purity

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

https://wiki.haskell.org/Monad/ST

In place modification

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

ST Monad Basics (3A) 10 Young Won Lim
10/31/19

Imperative style code example

that takes a list of numbers, and sums them,

using a mutable variable:

a version of the function sum is defined,

in a way that imperative languages are used

taken from the Haskell wiki page on the ST monad

https://en.wikipedia.org/wiki/Haskell_features#ST_monad

Imperative code example – sumST

STRef Monad Overview
(3C)

11 Young Won Lim
10/31/19

import Control.Monad.ST

import Data.STRef

import Data.Foldable

sumST :: Num a => [a] -> a

sumST xs = runST $ do

 n <- newSTRef 0

 for_ xs $ \x ->

 modifySTRef n (+x)

 readSTRef n

Imperative style code to sum elements of a list

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

sumST example – imperative style

STRef Monad Overview
(3C)

12 Young Won Lim
10/31/19

sum :: [a] -> a

sum [] = 0

sum (x:xs) = x + sum xs

product :: [a] -> a

product [] = 1

product (x:xs) = x * product xs

concat :: [[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ concat xs

https://en.wikibooks.org/wiki/Haskell/Lists_III

sum example – functional style

ST Monad Basics (3A) 13 Young Won Lim
10/31/19

data ST s a the strict state-transformer monad

the s parameter keeps the internal states

of different invocations of runST separate

from other invocations of runST and

from invocations of stToIO.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

s parameter

runST :: (forall s. ST s a) -> a

stToIO :: ST RealWorld a -> IO a

ST Monad Basics (3A) 14 Young Won Lim
10/31/19

data ST s a the strict state-transformer monad

the s parameter is

 an uninstantiated type variable

(inside invocations of runST),

 RealWorld

(inside invocations of stToIO).

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

s parameter instance

runST :: (forall s. ST s a) -> a

stToIO :: ST RealWorld a -> IO a

ST Monad Basics (3A) 15 Young Won Lim
10/31/19

runST :: (forall s. ST s a) -> a

return the value a computed

by a state transformer computation. ……. ST s a

The forall ensures that

the internal state s used by the ST computation ……. ST s a

is inaccessible to the rest of the program.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

runST method

ST Monad Basics (3A) 16 Young Won Lim
10/31/19

There is one major difference

that sets apart ST from both State and IO.

runST extracts a value

Control.Monad.ST offers a runST function

runST :: (forall s. ST s a) -> a

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

runST method extracts a value

ST Monad Basics (3A) 17 Young Won Lim
10/31/19

to get out of the State monad,

use runState ………. s -> (s, a) …….. function

to get out of the ST monad,

use runST …………….. a ...………….. value

newtype State s a = State {runState :: s -> (s, a)}

runState :: State s a -> s -> (s, a)

newtype ST s a = ST (State# s -> (# State# s, a #))

runST :: forall a. (forall s. ST s a) -> a

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runState vs runST

runState :: s -> (s, a)
State Constructors

ST Monad Basics (3A) 18 Young Won Lim
10/31/19

runST :: (forall s. ST s a) -> a

non conventional monad method type signature

extract a values from the ST monad value

a forall s. enclosed within the type of an argument

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

forall s. in an argument

ST Monad Basics (3A) 19 Young Won Lim
10/31/19

runST :: (forall s. ST s a) -> a

- tells the type checker s could be anything.

- do not make any assumptions about it.

 → this means s cannot be matched with anything

 even with the s from another invocation of runST

uninstantiated s value

an existential type

the only thing we know about it is that it exists.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Uninstantiated s value

Uninstantiated value

Existential type s

ST Monad Basics (3A) 20 Young Won Lim
10/31/19

The s makes the type system prevent you

from doing things which would be unsafe.

It doesn't "do" anything at run-time;

it just makes the type checker

reject programs that do dubious things.

(It is a so-called phantom type,

a thing with only exists

in the type checker's view,

and doesn't affect anything at run-time.)

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

Existential type s

ST Monad Basics (3A) 21 Young Won Lim
10/31/19

By using an uninstantiated s value,

we can ensure that we aren't "cheating"

and running arbitrary IO actions inside an ST action.

Instead, we just have "local state" modifications,

for some definition of local state.

the details of using ST correctly and

the Rank2Types approach to runST

https://haskell-lang.org/tutorial/primitive-haskell

Local state s in an ST action

runST :: (forall s. ST s a) -> a

Local State

Thread Safety

Compartmentalize

ST Escape Mechanism

ST Monad Basics (3A) 22 Young Won Lim
10/31/19

The ST monad lets you use update-in-place, reference type

but is escapable (unlike IO). forall. s

ST actions have the form:

ST s a

return a value of type a

execute in thread s.

all reference types are tagged with the thread s,

so that actions (ST s a) can only affect

references in their own thread (s)

https://wiki.haskell.org/Monad/ST

ST monad thread and reference

ST Monad Basics (3A) 23 Young Won Lim
10/31/19

a mutable reference created in one ST computation,

cannot be used in another ST computation

We don't want to allow this because of thread-safety

ST computations are not allowed to assume that

the initial internal environment

contains any specific references.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Thread safety constraint

Local State

Thread Safety

Compartmentalize

ST Escape Mechanism

ST Monad Basics (3A) 24 Young Won Lim
10/31/19

The key feature of the existential is that

it allows the compiler to generalize

the type of the state in the first parameter,

and so the result type cannot depend on it.

This neatly sidesteps our dependence problems,

and 'compartmentalizes' each call to runST into its own little heap,

with references not being able to be shared between different calls.

creating a reference in one ST computation,

It cannot be used in another ST computation

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Compartmentalize

runST :: (forall s. ST s a) -> a

Local State

Thread Safety

Compartmentalize

ST Escape Mechanism

X

ST Monad Basics (3A) 25 Young Won Lim
10/31/19

the type of the function used to escape ST is:

runST :: forall a. (forall s. ST s a) -> a

The action you pass must be (ST s a)

universal in s (forall s. ST s a)

so inside your action you don't know what thread (s),

thus you cannot access any other threads,

thus runST is pure.

uninstantiated s

https://wiki.haskell.org/Monad/ST

Escaping an ST action

Local State

Thread Safety

Compartmentalize

ST Escape Mechanism

ST Monad Basics (3A) 26 Young Won Lim
10/31/19

The ST monad also provides mutable state,

but it does have an escape mechanism

— the runST function.

This lets you convert an impure value into a pure one.

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

ST escape mechanism

ST Monad Basics (3A) 27 Young Won Lim
10/31/19

But now it is impossible to guarantee

what order separate ST blocks will run in.

(uninstantiated s of an existential type)

But it is possible to ensure that

separate ST blocks can't "interfere" with each other.

You can access mutable state,

but that state cannot escape the ST block.

For that reason, you cannot perform

any I/O operations in the ST monad.

https://stackoverflow.com/questions/28769550/what-is-the-difference-between-iotost-and-unsafeiotost-from-ghc-io

ST escape mechanism – safety measures

ST Monad Basics (3A) 28 Young Won Lim
10/31/19

runST is pure.

this is very useful, since it allows you to implement

externally pure things like in-place quicksort,

and present them as pure functions

 ∀ e. Ord e Array e -> Array e; ⇒ Array e -> Array e;

without using any unsafe functions.

https://wiki.haskell.org/Monad/ST

In-place quicksort

ST Monad Basics (3A) 29 Young Won Lim
10/31/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype ST s a = ST (State# s -> (# State# s, a #))

IO is isomorphic to ST RealWorld.

ST works under the exact same principles as IO

mutable references in the ST monad

are possible through threading state

https://haskell-lang.org/tutorial/primitive-haskell

ST vs. IO Monad – internal state

ST Monad Basics (3A) 30 Young Won Lim
10/31/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype ST s a = ST (State# s -> (# State# s, a #))

The RealWorld parameter indicates

that the internal state used by the ST computation s

is a special one supplied by the IO monad, RealWorld

and thus distinct from those used by invocations of runST.

https://haskell-lang.org/tutorial/primitive-haskell

ST vs. IO Monad – the special internal state Realworld

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

ST Monad Basics (3A) 31 Young Won Lim
10/31/19

Since ST RealWorld is isomorphic to IO,

we should be able to convert between the two of them.

stToIO :: ST RealWorld a -> IO a

can embed a strict state transformer ST in an IO action.

https://haskell-lang.org/tutorial/primitive-haskell

stToIO

runST :: (forall s. ST s a) -> a

ST Monad Basics (3A) 32 Young Won Lim
10/31/19

data RealWorld

RealWorld is deeply magical.

It is primitive,

but it is not unlifted (hence ptrArg).

we never manipulate values of type RealWorld;

it's only used in the type system, to parameterise State#.

State# RealWorld

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype ST s a = ST (State# s -> (# State# s, a #))

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

Realworld Type

ST Monad Basics (3A) 33 Young Won Lim
10/31/19

By default, Haskell uses lazy evaluation

when you call a function,

the body will not execute immediately,

The body will only be actually executed

when the result of the function

is used in an IO computation,

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

Lazy evalation

ST Monad Basics (3A) 34 Young Won Lim
10/31/19

Strict Haskell gives Haskell strict evaluation,

which is the kind of evaluation most other languages have,

and hence makes it easier to reason about performance.

mtl package provides two types of State monad;

Control.Monad.State.Strict

Control.Monad.State.Lazy. …. Control.Monad.State

https://www.reddit.com/r/programming/comments/3sux1d/strict_haskell_xstrict_has_landed/

Strict evaluation

https://kseo.github.io/posts/2016-12-28-lazy-vs-strict-state-monad.html

ST Monad Basics (3A) 35 Young Won Lim
10/31/19

data ST s a the strict state-transformer monad

The >>= and >> operations are strict in the state ……. s

(though not strict in values stored in the state). ………… a

runST (writeSTRef _|_ v >>= f) = _|_

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

ST Monad – a strict monad

ST Monad Basics (3A) 36 Young Won Lim
10/31/19

runST (writeSTRef _|_ v >>= f) = _|_

writeSTRef :: STRef s a -> a -> ST s ()

writeSTRef s v :: ST s ()

(>>=) :: ST s a -> (a -> ST s b) -> ST s b

f :: a -> ST s b

(writeSTRef s v >>= f) :: ST s b

runST :: forall a. (forall s. ST s a) -> a

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

ST Monad – a strict monad

ST Monad Basics (3A) 37 Young Won Lim
10/31/19

fixST :: (a -> ST s a) -> ST s a

allow the result of a state transformer computation

to be used (lazily) inside the computation.

Note that if f is strict, fixST f = _|_.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad-ST.html

fixST method

ST Monad Basics (3A) 38 Young Won Lim
10/31/19

ST Monad Basics (3A) 39 Young Won Lim
10/31/19

Input: case 2 of { (1) -> "A"; (2) -> "B"; (3) -> "C" }
Output: "B"

aaa x = case x of
 1 -> "A"
 2 -> "B"
 3 -> "C"
Input: aaa 3
Output: "C"

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

Case examples

aaa x = case x of
 [] -> [1]
 [x] -> [x]
 (x:xs) -> xs

Input: aaa [1,2,3]
Output: [2,3]

Input: aaa []
Output: [1]

Input: aaa [4]
Output: [4]

ST Monad Basics (3A) 40 Young Won Lim
10/31/19

newtype ST s a = ST (STRep s a)

type STRep s a = State# s -> (# State# s, a #)

https://stackoverflow.com/questions/12468622/how-does-the-st-monad-work

ST s a Type Definition

ST Monad Basics (3A) 41 Young Won Lim
10/31/19

instance Monad (ST s) where

 {-# INLINE (>>=) #-}

 (>>) = (*>)

 (ST m) >>= k

 = ST (\s ->

 case (m s) of { (# new_s, r #) ->

 case (k r) of { ST k2 ->

 (k2 new_s) }})

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

(ST s) Monad

ST Monad Basics (3A) 42 Young Won Lim
10/31/19

instance Monad (ST s) where

 {-# INLINE (>>=) #-}

 (>>) = (*>)

 (ST m) >>= k

 = ST (\s ->

 case (m s) of

 { (# new_s, r #) -> case (k r) of

 { ST k2 -> (k2 new_s) } })

newtype ST s a = ST (STRep s a)

type STRep s a = State# s -> (# State# s, a #)

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

(ST s) Monad

(m s) (# new_s, r #)

(ST m) >>= k

ST m :: ST s a

m :: STRep s a

m :: State# s -> (# State# s, a #)

(m s) :: (# State# s, a #)

(# new_s, r #) :: (# State# s, a #)

(k r) ST k2

k :: a -> ST s a r :: a

(k r) :: ST s a

ST k2 :: ST s a

k2 :: STRep s a

k2 :: State# s -> (# State# s, a #)

k2 new_s :: (# State# s, a #)

ST Monad Basics (3A) 43 Young Won Lim
10/31/19

 (ST m) >>= k

 = ST (\s -> case (m s) of

 { (# new_s, r #) -> case (k r) of

 { ST k2 -> (k2 new_s) } })

newtype ST s a = ST (STRep s a)

type STRep s a = State# s -> (# State# s, a #)

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

(ST s) Monad

(m s) (# new_s, r #)

(ST m) >>= k

ST m :: ST s a

m :: STRep s a

m :: State# s -> (# State# s, a #)

(m s) :: (# State# s, a #)

(# new_s, r #) :: (# State# s, a #)

(k r) ST k2

k :: a -> ST s a r :: a

(k r) :: ST s a

ST k2 :: ST s a

k2 :: STRep s a

k2 :: State# s -> (# State# s, a #)

k2 new_s :: (# State# s, a #)

m
State# s (# State# s, a #)

k2
State# s (# State# s, a #)

m :: STRep s a

k2 :: STRep s a

ST (k r)
State# s (# State# s, a #)

(k r) :: ST s a

ST Monad Basics (3A) 44 Young Won Lim
10/31/19

newtype ST s a = ST (STRep s a)

type STRep s a = State# s -> (# State# s, a #)

 (ST m) >>= k

 = ST (\s -> case (m s) of

 { (# new_s, r #) -> case (k r) of

 { ST k2 -> (k2 new_s) } })

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

(ST s) Monad

(m s) (# new_s, r #)

(ST m) >>= k

ST m :: ST s a

m :: STRep s a

m :: State# s -> (# State# s, a #)

(m s) :: (# State# s, a #)

(# new_s, r #) :: (# State# s, a #)

(k r) ST k2

k :: a -> ST s a r :: a

(k r) :: ST s a

ST k2 :: ST s a

k2 :: STRep s a

k2 :: State# s -> (# State# s, a #)

k2 new_s :: (# State# s, a #)

ms (# new_s, r #) m :: STRep s a

ST (k r) (k r) :: ST s anew_s (# new_s’, r’ #)

k2new_s k2 :: STRep s a (# new_s’, r’ #)

ST Monad Basics (3A) 45 Young Won Lim
10/31/19

ST

newtype ST s a = ST (STRep s a)

type STRep s a = State# s -> (# State# s, a #)

 (ST m) >>= k

 = ST (\s -> case (m s) of

 { (# new_s, r #) -> case (k r) of

 { ST k2 -> (k2 new_s) } })

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

(ST s) Monad

ms (# new_s, r #) >>= k

ST (k r) (k r) :: ST s anew_s (# new_s’, r’ #)

k2new_s k2 :: STRep s a (# new_s’, r’ #)

k2new_s (# new_s’, r’ #)

kr

ST Monad Basics (3A) 46 Young Won Lim
10/31/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

(>>=) = bindIO

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \s ->

 case m s of

(# s’, a #) -> unIO (k a) s’

(IO m) >>= k

IO m :: IO a m :: State# RealWorld -> (# State# RealWorld, a #)

k :: a -> IO b k a :: IO b

 s :: State# RealWorld

 s’ :: State# RealWorld

m s :: (# State# RealWorld, a #)

 (# s’, a #) :: (# State# RealWorld, a #)

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad

ST Monad Basics (3A) 47 Young Won Lim
10/31/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

(>>=) = bindIO

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \s ->

 case m s of

(# s’, a #) -> unIO (k a) s’

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a

k :: a -> IO b k a :: IO b

 unIO (k a) :: State# RealWorld -> (# State# RealWorld, a #)

 s’ :: State# RealWorld

 unIO (k a) s’ :: (# State# RealWorld, a #)

 \s -> unIO (k a) s’ :: State# RealWorld -> (# State# RealWorld, a #)

 IO $ \s -> unIO (k a) s’ :: IO b

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad

(IO m) >>= k

IO m :: IO a

k :: a -> IO b k a :: IO b

ST Monad Basics (3A) 48 Young Won Lim
10/31/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48

