
1 Young Won Lim
10/19/19

Monad P3 : IO Monad Basics (2A)

2 Young Won Lim
10/19/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

mailto:youngwlim@hotmail.com

IO Monad Basics (2A) 3 Young Won Lim
10/19/19

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

IO Monad Basics (2A) 4 Young Won Lim
10/19/19

Haskell separates pure functions from computations

where side effects must be considered

by encoding those side effects

as values of a particular type (IO a)

Specifically, a value of type (IO a) is an action,

which if executed would produce a result value of type a.

https://wiki.haskell.org/Introduction_to_IO

IO Monad

IO a

World (a, World)

a type of an action

Execution IO actions performed

 and returns a value (result)

IO Monad Basics (2A) 5 Young Won Lim
10/19/19

I/O
actions

https://wiki.haskell.org/Introduction_to_IO

IO Monad – encoding side effects

IO a

World (a, World)

a type of an action

Execution IO actions performed

 and returns a value (result)

a pure function

computations
with side effects

IO a

World (a, World)

a type of an action

IO Monad Basics (2A) 6 Young Won Lim
10/19/19

Computations that result in values

Monads like IO

map types t to a new type IO t

IO t represents computations that result in values

a function type: World -> (t, World)

 the result type : t

 type IO t = World -> (t, World)

https://wiki.haskell.org/Maybe

RealWorld -> (a, RealWorld)

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

t IO t lifted type

IO Monad Basics (2A) 7 Young Won Lim
10/19/19

IO t is a parameterized function type

input : a World

output: a result value of the type t and a new updated World

are obtained by modifying the given World

in the process of computing the result value of the type t.

 type IO t = World -> (t, World) type synonym

cf) type application

https://www.cs.hmc.edu/~adavidso/monads.pdf

Type Synonym IO t

World -> (t, World)

IO t

World (t, World)

World (t, World)

RealWorld

IO Monad Basics (2A) 8 Young Won Lim
10/19/19

The value of type IO a

a = 1

b = 2

a = 1

b = 2

x = 5

func (x, w1) w0

w0 :: s w1 :: s

IO Int

x :: Int

func :: IO a

func :: IO Int

m :: IO a

m :: IO Int

monadic value

assume the value of type (IO a) is func

representing an action, which would produce

a result value of type a, if executed

func w0 returns the tuple (x, w1)

x is the a result value of type a

When IO a is defined as

 type IO a = World -> (a, World)

The value func of type (IO a) is the name

of the underlying (state) function

IO Monad Basics (2A) 9 Young Won Lim
10/19/19

 type IO t = World -> (t, World)

IO t is a function type not a function value

IO t (x, w1) w0

World -> (t, World)

IO t

World (t, World)

World (t, World)

 (x, w1) :: (t, World)

 x :: t

 w1 :: World

type view value view

t IO t lifted type

 IO t World (x, w1) ::

let (x, w1) = IO t w0

IO Monad Basics (2A) 10 Young Won Lim
10/19/19

 type IO t = World -> (t, World)

(t, World) – the return type of the function

func (x, w1) w0

World -> (t, World)

IO t

World (t, World)

World (t, World)

func :: IO t

func w0 :: (t, World)

 (x, w1) :: (t, World)

 x :: t

 w1 :: World

 IO t World (x, w1) ::

let (x, w1) = func w0

func is a monadic value of the type IO t, then

func is also the name of the underlying function

func :: IO t

IO Monad Basics (2A) 11 Young Won Lim
10/19/19

http://learnyouahaskell.com/for-a-few-monads-more

func :: IO Int type

func :: IO Int

func w0 :: IO Int World

 x :: Int

 w0 :: World

let (x, w1) = func w0

type IO Int = World -> (Int, World)

the function input type – initial state type

the result type

funcw0

the function return type

the function type

the bindings of x and w1

(x, w1) (x, w1) = func w0

func :: World -> (Int, World)

func w0 :: (Int, World)

IO Monad Basics (2A) 12 Young Won Lim
10/19/19

http://learnyouahaskell.com/for-a-few-monads-more

Parameterized type IO a

 type IO a = s -> (a, s)

 type IO Int = s -> (Int, s)

 type IO Char = s -> (Char, s)

 type IO Int = Int -> (Int, Int)

func :: IO Int

s ← Int in practice the type s is RealWorld

RealWorld -> (a, RealWorld)

IO Monad Basics (2A) 13 Young Won Lim
10/19/19

It is impossible

to store the extra copies of the contents of your hard drive

that each of the Worlds contains

given World → updated World

type IO a = RealWorld -> (a, RealWorld)

https://www.cs.hmc.edu/~adavidso/monads.pdf

Implementation of IO t

IO Monad Basics (2A) 14 Young Won Lim
10/19/19

 1st IO
initial
World

updated
World

Which World was given initially?

Which World was updated?

In GHC, a main must be defined somewhere with type IO ()

a program execution starts from the main

the initial World is contained in the main to start everything off

the main passes the updated World from each IO

to the next IO as its initial World

an IO that is not reachable from main will never be executed

an initial / updated World is not passed to such an IO

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad in GHC

The modification of the World

 2nd IO
updated
World 3rd IO

updated
World

IO Monad Basics (2A) 15 Young Won Lim
10/19/19

when using GHCI,

everything is wrapped in an implicit IO,

since the results get printed out to the screen.

there’s only 1 World in existence at any given moment.

each IO takes that one and only World, consumes it,

and gives back a single new updated World.

consequently, there’s no way to accidentally run out of Worlds,

or have multiple ones running around.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad in GHCI

the implementation of bind

IO

current
World

updated
World

only 1
World

IO Monad Basics (2A) 16 Young Won Lim
10/19/19

http://learnyouahaskell.com/for-a-few-monads-more

Variable Mappings : Context

a = 1
b = 2

s -> (a, s)

s (a, s)

● all the current
variable mappings

● all the previous
variable mappings

● the new variable
mapping

● a result : 5

a = 1
b = 2
x = 5

(x, w1) w0

w0 :: s w1 :: s

IO a

x :: a

s : a type

a : a type

w0 :: s a value

x :: a a value

w1 :: s a value

RealWorld RealWorld

IO Monad Basics (2A) 17 Young Won Lim
10/19/19

instance Monad IO where

 return x w0 = (x, w0)

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Instance (1)

IO Monad Basics (2A) 18 Young Won Lim
10/19/19

instance Monad IO where

 return x w0 = (x, w0)

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Instance (2)

ioX
World (t, World)

 f x w1

w0 (x, w1)

(ioX >>= f) :: IO a -> (a -> IO b) -> IO b

ioX :: IO a

f :: (a -> IO b)

ioX :: IO a f :: (a -> IO b)

ioY
World (t, World)
w1 (y, w1)

fx
t

IO Monad Basics (2A) 19 Young Won Lim
10/19/19

The return function takes x

and gives back a function

that takes a World

and returns x along with the “new, updated” World

formed by not modifying the World it was given

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

return

 return x world = (x, world)

returnx

World (x, World)

IO Monad Basics (2A) 20 Young Won Lim
10/19/19

https://www.cs.hmc.edu/~adavidso/monads.pdf

return method and partial application

let (x, w0) = return x w0

return
a

World (a, World)

return a :: a -> IO a

returnx

w0 (x, w0)

x

w0
 (x, w0)

return a World :: (a, World)

return

a

World

 (a, World)

let (x, w0) = return x w0

return

Types

Values

IO Monad Basics (2A) 21 Young Won Lim
10/19/19

(>>) :: IO a -> IO b -> IO b

(x >> y)

● if x and y are IO actions

● then it is the action that first performs x

● dropping the result

● then performs y

● returns its result.

https://wiki.haskell.org/Introduction_to_IO

IO Monad – >>

putStrLn "Hello" >> putStrLn "World"

IO () -> IO () -> IO ()

IO Monad Basics (2A) 22 Young Won Lim
10/19/19

(>>=) :: IO a -> (a -> IO b) -> IO b

(x >>= f)

● to use the result of the first action (x)

● in order to affect what the second action f will do

● perform the first action : the action x

● captures its result

● passes it to f

● then f computes a second action

● performs this second action

● its result is the result of the overall computation.

https://wiki.haskell.org/Introduction_to_IO

IO Monad – >>=

x >> y = x >>= const y

getLine >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

 IO a -> (a -> IO b) -> IO b

IO Monad Basics (2A) 23 Young Won Lim
10/19/19

main = putStrLn "Hello, what is your name?"

 >> getLine

 >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

main = do putStrLn "Hello, what is your name?"

 name <- getLine

 putStrLn ("Hello, " ++ name ++ "!")

return :: a -> IO a

Note that there is no function like this:

unsafe :: IO a -> a

https://wiki.haskell.org/Introduction_to_IO

Bind operator >>= and do Block

getLine :: IO String

>>= (explicit passing)

do (implicit passing)

IO Monad Basics (2A) 24 Young Won Lim
10/19/19

the expression (ioX >>= f) has type World -> (t, World)

a function that takes a World, called w0,

which is used to extract x from its IO monad.

This x gets passed to f, resulting in another IO monad,

which again is a function that takes a World

and returns a y and a new, updated World.

We give it the World we got back from getting x out of its monad,

and the thing it gives back to us is the y with a final version of the World

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

iox >>= f

ioXWorld (t, World)
f

World
(t, World)

 f x w1

 w0 (x, w1)

t

x

w1

the implementation of bind

y

(ioX >>= f) :: IO a -> (a -> IO b) -> IO b

ioX :: IO a f :: (a -> IO b)

IO Monad Basics (2A) 25 Young Won Lim
10/19/19

instance Monad IO where

 return x w0 = (x, w0)

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

ioX and f types

ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX w0 (x, w1) w1 (y, w1)

f x

:: IO a :: IO b

ioX :: IO a f :: (a -> IO b)

IO Monad Basics (2A) 26 Young Won Lim
10/19/19

ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX :: IO a w0 :: World x :: a

f :: a -> IO b w1 :: World

ioX w0 :: (a, World) (x, w1) :: (a, World)

f x :: IO b

 f x w1 :: (b, World) (y, w1) :: (b, World)

type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

ioX w0 and f x w1

ioX w0 (x, w1) w1 (y, w1)

f x :: a -> IO b

f w1 (y, w1)
 x

f :: a -> IO b

f x :: IO b

f :: a -> World -> (b World)

f x w1 :: (b World)

ioX w0 f x w1

IO Monad Basics (2A) 27 Young Won Lim
10/19/19

ioX >>= f :: IO a -> (a -> IO b) -> IO b

ioX :: IO a x :: a

f :: a -> IO b w0 :: World w1 :: World

ioX w0 :: (a, World) (x, w1) :: (a, World)

f x :: IO b

 f x w1 :: (b, World) (y, w1) :: (b, World)

https://www.cs.hmc.edu/~adavidso/monads.pdf

Binding variables

ioX
f

 f x w1

 w0 (x, w1)
x

w1
 (y, w1)

let (x, w1) = ioX w0

binding

internal
variables

ioX – monadic value

f – monad returning function

IO Monad Basics (2A) 28 Young Won Lim
10/19/19

https://www.cs.hmc.edu/~adavidso/monads.pdf

Steps of ioX >>= f (1. state update, 2. result)

the implementation of bind

(–,w0) (x,w1) (y,w1)

(t,World) (t,World) (t,World)

first, execute the action

execute ioX

State updated

w0 → w1

result extracted

x is the result

then, compute the new result

using f x

no State transition

w1 is remained

result computed y = (f x)

the expression (ioX >>= f) has

type IO a -> (a -> IO b) -> IO b

IO Monad Basics (2A) 29 Young Won Lim
10/19/19

(>>=) operator type signature

 (>>=) :: IO a -> (a -> IO b) -> IO b

>>=1st arg ioX

2nd arg

 ioY returned

monadic value

1st arg

Monad

2nd arg

Function Monad

return

f

ioX :: IO a

ioY :: IO b

IO Monad Basics (2A) 30 Young Won Lim
10/19/19

(>>=) operator type diagram

f x

>>=ioX :: IO a ioY :: IO b

ioY :: IO b

1st arg

Monad

2nd arg

Function Monad

return

 (>>=) :: IO a -> (a -> IO b) -> IO b

IoX – state update

IoY – result extraction

IO Monad Basics (2A) 31 Young Won Lim
10/19/19

(>>=) operator threads

ioX w0 (x, w1)

 w1 (y, w1) f x

:: IO a

:: a -> IO b

>>=

ioY

 w1 (y, w1) ioY

:: IO b

ioX – state update

ioY – result extraction

IO Monad Basics (2A) 32 Young Won Lim
10/19/19

the expression (ioX >>= f) has

type IO a -> (a -> IO b) -> IO b

ioX :: IO a has a function type of World -> (a, World)

a function that takes w0 :: World,

returns x :: a and the new, updated w1 :: World

x and w1 get passed to f, resulting in another IO monad,

which again is a function that takes w1 :: World

and returns y computed from x and the same w1 :: World

https://www.cs.hmc.edu/~adavidso/monads.pdf

(>>=) operator summary

(ioX >>= f)

f x

>>=ioX ioY

ioY

ioX :: IO a ioY :: IO bf :: a -> IO a

World (a, World)

ioX :: IO a

ioY :: IO b
(–,w0) (x,w1) (y,w1)

ioX – state update

ioY – result extraction

state update

result extraction

IO Monad Basics (2A) 33 Young Won Lim
10/19/19

We give the IOx the w0 w0 :: World

we got back the updated w1 w1 :: World

and x out of its monad x :: a

the f is given with

the x with x :: a

the updated w1 w1 :: World

.

The final IO Monad

takes w1 w1 :: World

returns w1 w1 :: World

and y out of its monad y :: a

https://www.cs.hmc.edu/~adavidso/monads.pdf

(>>=) operator binding

bind variables

ioX w0 (x, w1)

ioY w1 (y, w1)

let (x, w1) = ioX w0

let (y, w1) = ioY w0

the expression (ioX >>= f) has

type IO a -> (a -> IO b) -> IO b

bind variables

IO Monad Basics (2A) 34 Young Won Lim
10/19/19

Every time a new command is given to GHCI,

GHCI passes the current World to IO,

GHCI gets the result of the command back,

GHCI request to display the result (executing actions)

(which updates the World by modifying

● the contents of the screen or

● the list of defined variables or

● the list of loaded modules or whatever),

GHCI saves the new World to process the next command.

https://www.cs.hmc.edu/~adavidso/monads.pdf

GHCI

the implementation of bind

IO Monad Basics (2A) 35 Young Won Lim
10/19/19

 type IO a = s -> (a, s)

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype State s a = State { runState :: s -> (a, s) }

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad

IO Monad Basics (2A) 36 Young Won Lim
10/19/19

newtype State s a = State { runState :: s -> (a, s) }

do x <- doSomething

 y <- doSomethingElse

 return (x + y)

\s ->

let (x, s') = doSomething s

 (y, s'') = doSomethingElse s' in

(x + y, s'')

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

Threading the state

s s’ s’’

creating data dependecies

IO Monad Basics (2A) 37 Young Won Lim
10/19/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

