
1 Young Won Lim
7/6/19

Monad P2: State Monad Methods (2B)

2 Young Won Lim
7/6/19

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Monad Methods
(2B)

3 Young Won Lim
7/6/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

State Monad Methods
(2B)

4 Young Won Lim
7/6/19

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put, get, return methods summary

State
((), ns)

ns
put

_

State
((), s) _

initial monadic value

State
(s, s)

get

s

State
((), s) _

State
(x, s)

x
return

s

State
((), s) _

return monadic value

State Monad Methods
(2B)

5 Young Won Lim
7/6/19

put :: s -> State s a

put ns = state $ _ -> ((), ns)

Given a wanted state new State (ns),

put generates a state processor

● ignores whatever the state it receives,

● updates the state to ns

● doesn't care about the result of this processor

● all we want to do is to change the state

● the tuple will be ((), ns)

● () : the universal placeholder value.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put changes the current state

State
((), ns)

State s a

ns
put

_

return a monadic value

_ : does not care
the current state

() : does not care
about the result

State
((), s)

State s a

_

initial monadic value

return monadic value

State Monad Methods
(2B)

6 Young Won Lim
7/6/19

get :: State s s

get = state $ \s -> (s, s)

get generates a state processor

● gives back the state s0

● as a result and as an updated state – (s0, s0)

● the state will remain unchanged

● a copy of the state will be made available

through the result returned

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

get gives the current state

State
(s, s)

State s a

get

s

it is a monadic value

The result and the new
state values are copied
values of the current state

State
((), s)

State s a

_

initial monadic value

return monadic value

State Monad Methods
(2B)

7 Young Won Lim
7/6/19

return :: a -> State s a

return x = state (\s -> (x, s))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return changes the result value

giving a value (x) to return

results in a state processor function

which takes a state (s) and

returns it unchanged (s),

together with the value x

finally, the function is wrapped up by state.

State
(x, s)

State s a

x
return

s

return a monadic value

s : does not change
the current state

State
((), s)

State s a

_

initial monadic value

return monadic value

State Monad Methods
(2B)

8 Young Won Lim
7/6/19

put :: s -> State s a

put s :: State s a

put ns = state $ _ -> ((), ns)

-- setting a state to ns

-- regardless of the old state

-- setting the result to ()

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put returns a monadic value via state

state

_ (a, ns)

ns
put return a monadic value

State
((), ns)

State s a

_

state $ _ -> ((), ns)

State Monad Methods
(2B)

9 Young Won Lim
7/6/19

get :: State s s

get = state $ \s -> (s, s)

-- getting the current state s

-- also setting the result to s

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

get is a monadic value via state

state

s (s, s)

get a monadic value

State
(s, s)

State s a

s

state $ \s -> (s, s)

State Monad Methods
(2B)

10 Young Won Lim
7/6/19

return :: s -> State s a

return s :: State s a

return x = state $ _ -> (x, s)

-- do not change a state s

-- setting the result to x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return returns a monadic value via state

state

s (x, s)

x
return return a monadic value

State
(x, s)

State s a

s

state $ _ -> (x, s)

State Monad Methods
(2B)

11 Young Won Lim
7/6/19

put :: s -> State s a

put s :: State s a

put newState = state $ _ -> ((), newState)

runState (put ns) s0

runState (put 5) 1

((),5)

Initial state s0 can be supplied either by runState

or by the initial monadic value

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Threading put via runState

state

_ (a, ns)

ns
put return a monadic value

State
((), ns)

State s a

s0

s0

ns

((), ns)

State Monad Methods
(2B)

12 Young Won Lim
7/6/19

get :: State s s

get = state $ \s -> (s, s)

runState (get) s0

runState (get) 1

(1,1)

Initial state s0 can be supplied either by runState

or by the initial monadic value

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Running get via runState

state

s (s, s)

get a monadic value

State
(s, s)

State s a

s

s0

(s0, s0)

State Monad Methods
(2B)

13 Young Won Lim
7/6/19

return :: s -> State s a

return s :: State s a

return x = state $ _ -> (x, s)

runState (return x) s0

runState (return 3) 1

(3,1)

Initial state s0 can be supplied either by runState

or by the initial monadic value

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Running return via runState

state

s (x, s)

x
return return a monadic value

State
(x, s)

State s a

_

s0

(x, s0)

x

State Monad Methods
(2B)

14 Young Won Lim
7/6/19

import Control.Monad.Trans.State

runState get 1

(1,1)

runState (return 'X') 1

('X',1)

runState get 1

(1,1)

runState (put 5) 1

((),5)

https://wiki.haskell.org/State_Monad

Example codes (1)

runState (put 1 >> get >> put 2 >> get) 0

(2,2)

runState (get >>= \n -> put (n+1) >> return n) 0

(0,1)

inc = get >>= \n -> put (n+1) >> return n

runState inc 0

(0,1)

runState (inc >> inc) 0

(1,2)

runState (inc >> inc >> inc) 0

(2,3)

State Monad Methods
(2B)

15 Young Won Lim
7/6/19

import Control.Monad.Trans.State

let postincrement = do { x <- get; put (x+1); return x }

runState postincrement 1

(1,2)

get : (1,1) → (1,2)

let predecrement = do { x <- get; put (x-1); get }

 runState predecrement 1

(0,0)

(1,_) → get : (0, 0)

https://wiki.haskell.org/State_Monad

Example codes (2)

runState (modify (+1)) 1

((),2)

runState (gets (+1)) 1

(2,1)

evalState (gets (+1)) 1

2

execState (gets (+1)) 1

1

evalState (a, s) computes the result

execState (a, s) updates state

modify state ((), f x)

get state (f x, s)

State Monad Methods
(2B)

16 Young Won Lim
7/6/19

Think two phases (input, output)

x s

Initial mx :: State s a

x ss0

runState mx s0

x1 s1
s

s0
x1 s1

Final mx :: State s a

Initial mx :: State s a Final mx :: State s a

Input Phase – internal Output Phase

Input Phase – external Output Phase

get,
put,
return,
…

get,
put,
return,
…

State Monad Methods
(2B)

17 Young Won Lim
7/6/19

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

runState (put newSt) s0 ((), newSt)

runState (put 5) 1

 ((),5)

set the result value to () and set the state value.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Executing the state processor – put

((), newSt)_

s0

((), newSt)

applying the function

State Monad Methods
(2B)

18 Young Won Lim
7/6/19

get :: State s s

get = state $ \s -> (s, s)

runState (get) s0 (s0, s0)

runState get 1

 (1,1)

set the result value to the state and leave the state unchanged.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Executing the state processor – get

p :: State s a

(st, st)st

s0

(s0, s0)

applying the function

State Monad Methods
(2B)

19 Young Won Lim
7/6/19

return :: s -> State s a

return x = state $ s -> (x, s)

runState (return x0) s0 (x, s)

runState return 3 1

 (3,1)

set the new result value and leave the state unchanged.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Executing the state processor – return

(x0, s0)s0

s0

(x0, s0)

applying the function

State Monad Methods
(2B)

20 Young Won Lim
7/6/19

runState (put 5) 1

 ((),5)

set the result value to () and set the state value.

 put 5 :: State Int ()

 runState (put 5) :: Int -> ((),Int)

 initial state = 1 :: Int

 final value = () :: ()

 final state = 5 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – put

put :: s -> State s a

put newState = state $ _ -> ((), newState)

((), newSt)_

1

((), 5)

5

State Monad Methods
(2B)

21 Young Won Lim
7/6/19

runState get 1

 (1,1)

set the result value to the state and leave the state unchanged.

 get :: State Int Int

 runState get :: Int -> (Int, Int)

 initial state = 1 :: Int

 final value = 1 :: Int

 final state = 1 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – get

get :: State s s

get = state $ \s -> (s, s)

st

1

(1, 1)
(st, st)

State Monad Methods
(2B)

22 Young Won Lim
7/6/19

runState return 3 1

 (3,1)

set the new result value and leave the state unchanged.

 return :: Int -> State Int Int

 runState return 3 :: Int -> (Int, Int)

 initial state = 1 :: Int

 final value = 3 :: Int

 final state = 1 :: Int

https://wiki.haskell.org/State_Monad

State Monad Examples – return

return :: s -> State s a

return x = state $ s -> (x, s)

st

1

(3, 1)
(x, st)

3

State Monad Methods
(2B)

23 Young Won Lim
7/6/19

(return 5) 1 -> (5,1) -- a way of thinking

get 1 -> (1,1) -- a way of thinking

(put 5) 1 -> ((),5) -- a way of thinking

a value of type (State s a) is

a function from initial state s

to final value a and final state s: (a,s).

these are usually wrapped,

but shown here unwrapped for simplicity.

(return 5) state(1 -> (5,1)) -- an actual impl

get state(1 -> (1,1)) -- an actual impl

(put 5) state(1 -> ((),5)) -- an actual implementation

https://wiki.haskell.org/State_Monad

Think an unwrapped state processor

Think an unwrapped
state processor

wrapping the
state processor

s

(a, s)s

x

state

s (a, s)

State (a, s)

State s a

s

State Monad Methods
(2B)

24 Young Won Lim
7/6/19

return :: a -> State s a

return x s = (x,s)

get :: State s s

get s = (s,s)

put :: s -> State s ()

put x s = ((),x)

modify :: (s -> s) -> State s ()

modify f = do { x <- get; put (f x) }

gets :: (s -> a) -> State s a

gets f = do { x <- get; return (f x) }

https://wiki.haskell.org/State_Monad

Unwrapped Implementation Examples

● inside a monad instance

● unwrapped implementations

return → (x,s)

get → (s, s)

put → ((),s)

modify

x <- get; put (f x) - state

gets

 x <- get; return (f x) - result

State Monad Methods
(2B)

25 Young Won Lim
7/6/19

Return leaves the state unchanged and sets the result:

-- ie: (return 5) 1 -> (5,1) -- a way of thinking

runState (return 5) 1 (5,1)

Get leaves state unchanged and sets the result to the state:

-- ie: get 1 -> (1,1) -- a way of thinking

runState get 1 (1,1)

Put sets the result to () and sets the state:

-- ie: (put 5) 1 -> ((),5) -- a way of thinking

runState (put 5) 1 ((),5)

https://wiki.haskell.org/State_Monad

State Monad Examples – return, get, and put

State Monad Methods
(2B)

26 Young Won Lim
7/6/19

runState (modify (+1)) 1 ((),2)

 (+1) 1 → 2 :: s

runState (gets (+1)) 1 (2,1)

 (+1) 1 → 2 :: a

evalState (modify (+1)) 1 ()

 → s :: state fst ((), 2)

execState (modify (+1)) 1 2

 → a :: result snd ((), 2)

evalState (gets (+1)) 1 2

 → s :: state fst (2, 1)

execState (gets (+1)) 1 1

 → a :: result snd (2, 1)

https://wiki.haskell.org/State_Monad

State Monad Examples – modify and gets

modify state ((), f x)

get state (f x, s)

evalState (a, s)

computes the result

execState (a, s)

updates state

(a , s)

(eval, exec)

(get, modify)

State Monad Methods
(2B)

27 Young Won Lim
7/6/19

execState get 0 0

set the value of the counter using put:

execState (put 1) 0 1

set the state multiple times:

execState (do put 1; put 2) 0 2

modify the state based on its current value:

execState (do x <- get; put (x + 1)) 0 1

execState (do modify (+ 1)) 0 1

execState (do modify (+ 2); modify (* 5)) 0 10

https://stackoverflow.com/questions/25438575/states-put-and-get-functions

State Monad Examples – put, get, modify

(0,0)

((),1)

((),1) → ((), 2)

(0,0) → ((),1)

((),1)

((),2) → ((),10)

State Monad Methods
(2B)

28 Young Won Lim
7/6/19

a stateful computation is a function that

takes some state and

returns a value along with some new state.

That function would have the following type:

 s -> (a,s)

s is the type of the state and

a the result of the stateful computation.

http://learnyouahaskell.com/for-a-few-monads-more

A Stateful Computation

s -> (a, s)

s (a, s)

a function is an executable data

when executed, a result is produced

action, execution, result

s -> (a, s)

State Monad Methods
(2B)

29 Young Won Lim
7/6/19

inside a monad,

when sc is a stateful computation

then the result of the stateful computation sc

can be assigned to x

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations inside the State Monad

sc :: State s a

x :: a (the execution result of sc)

s -> (a, s)

the result type

x <- sc

x :: State s a

State (a, s)

State s a

s

x <- sc

x

only the result is bound

State Monad Methods
(2B)

30 Young Won Lim
7/6/19

inside the State monad,

get returns State monadic value whose new state and result

values are the current state value

x <- get

the stateful computation is performed

over the monadic value returned by get

the result of the stateful computation of get

is st::s, thus x will get the st

this is like evalState is called with the current monad instance

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

get inside the State Monad

x :: a the execution result of get

st

(st, st)st

st

● get executed

● State monadic value

● stateful computation

● result :: s

State Monad Methods
(2B)

31 Young Won Lim
7/6/19

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

-- a way of thinking

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

put inside State Monad

st

put
newSt

((), newSt)

put :: s -> ()

()

stateful computation of put

the result type :: ()

in x <- put newSt

x

State Monad Methods
(2B)

32 Young Won Lim
7/6/19

get :: State s s

get = state $ \s -> (s, s)

-- a way of thinking

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

get inside State Monad

(st, st)st

get

get :: s

st

stateful computation of get

the result type :: s

in x <- get

x

State Monad Methods
(2B)

33 Young Won Lim
7/6/19

put :: s -> State s a

put newSt = state $ _ -> ((), newSt)

-- a way of thinking

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return inside State Monad

st

return
val

(val, st)

return :: s -> s

stateful computation of put

the result type :: s

in x <- return val

x
val

State Monad Methods
(2B)

34 Young Won Lim
7/6/19

Most monads have some "run" functions

such as runState, execState, and so forth.

frequent calling such functions inside the monad

indicates that the functionality of the monad does not fully exploited

s0 <- get -- read the state of the current instance

let (a,s1) = runState p s0 -- pass the state to p, get new state

put s1 -- save new state

return a

a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

run functions inside a Monad

let p = state (\y -> (y, y+1))

State Monad Methods
(2B)

35 Young Won Lim
7/6/19

the same binding variable a

the same state s1

s0 <- get

let (a,s1) = runState p s0

put s1

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (1)

runState
(a, s)State s a s

p s0 (a, s1)

(a, s1)

s0

a <- p

the current monad instance

p :: State s a

for this binding,
another monad p
is executed inside monad p

stateful computation p

runState p s0

(s0, s0)s0

get
s0

put
()

s0

s1

((), s1)

State Monad Methods
(2B)

36 Young Won Lim
7/6/19

s0 <- get

let (a,s1) = runState p s0

put s1

return a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (2)

p :: State s a

binded name (a, s1) return aput s1

put
()

s0

s1

((), s1)

return x

s1

a

(a, s1)

a

State Monad Methods
(2B)

37 Young Won Lim
7/6/19

a <- p -- the stateful computation p updates the state to s1

-- the result of the state returned is assigned to a

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Redundant computation examples (3)

p :: State s a

stateful computation p return the result a

-
(a, s)s

s0

a
(a, s)s

s1

a

runState p s0 (a, s1)

State Monad Methods
(2B)

38 Young Won Lim
7/6/19

import Control.Monad.State.Lazy

tick :: State Int Int

tick = do n <- get

 put (n+1)

 return n

plusOne :: Int -> Int

plusOne n = execState tick n

plus :: Int -> Int -> Int

plus n x = execState (sequence $ replicate n tick) x

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

Counter Example

Add one to the given
number using the state
monad:

A function to increment a counter.

A contrived addition example. Works
only with positive numbers:

tick :

- a monadic value itself

- a function returning a monadic value

State Monad Methods
(2B)

39 Young Won Lim
7/6/19

tick :: State Int Int

tick = do n <- get

 put (n+1)

 execState n

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

Counter Example – tick

State
Int (Int, Int)

tick :: State Int Int

(x, s) s

State
(s, s+1) s+1

State
(s, s) s

n

get

State
((), s+1) _

put (n+1)

State
(s, s+1) s+1

return n

s

s s

s s+1

s+1 s+1

states

State Monad Methods
(2B)

40 Young Won Lim
7/6/19

tick :: State Int Int

tick = do n <- get

 put (n+1)

 return n

tick = get >>= \n -> put (n+1) >> return n

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

Counter Example – tick without do

State
Int (Int, Int)

tick :: State Int Int

(x, s) s

State
(s, s+1) s+1

Int cannot receive ()

State Monad Methods
(2B)

41 Young Won Lim
7/6/19

tick :: State Int Int

tick = do n <- get

 put (n+1)

 return n

plusOne :: Int -> Int

plusOne n = execState tick n

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

Counter Example – incrementing

State
Int (Int, Int)

tick :: State Int Int

(x, s) s

State
(n, n+1) n+1

n+1

State Monad Methods
(2B)

42 Young Won Lim
7/6/19

plus :: Int -> Int -> Int

plus n x = execState (sequence $ replicate n tick) x

 1 2 n

sequence $ [tick, tick, … ,tick]

runState (sequence $ [tick, tick]) 3 ([3,4],5) (3,4) → (4, 5)

runState (sequence $ [tick, tick, tick]) 3 ([3,4,5],6) (3,4) → (4,5) → (5,6)

execState (sequence $ [tick, tick, tick]) 3 6

evalState (sequence $ [tick, tick, tick]) 3 [3,4,5]

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

Counter Example – using sequence

State Monad Methods
(2B)

43 Young Won Lim
7/6/19

replicate :: Int -> a -> [a]

replicate n x is a list of length n with x the value of every element.

replicate 3 5

[5,5,5]

replicate 5 "aa"

["aa","aa","aa","aa","aa"]

replicate 5 'a'

"aaaaa"

http://zvon.org/other/haskell/Outputprelude/replicate_f.html

replicate

State Monad Methods
(2B)

44 Young Won Lim
7/6/19

sequence :: Monad m => [m a] -> m [a]

evaluate each action in the sequence from left to right,

and collect the results.

runState (sequence [get, return 3, return 4]) 1

([1,3,4],1)

runState get 1 (1,1) result: 1

runState (return 3) 1 (3,1) result: 3

runState (return 4) 1 (4,1) result: 4

http://derekwyatt.org/2012/01/25/haskell-sequence-over-functions-explained/

sequence

State Monad Methods
(2B)

45 Young Won Lim
7/6/19

collectUntil f comp = do

 st <- get -- Get the current state

 if f st then return [] -- If it satisfies predicate, return

 else do -- Otherwise...

 x <- comp -- Perform the computation s

 xs <- collectUntil f comp -- Perform the rest of the computation

 return (x : xs) -- Collect the results and return them

simpleState = state (\x -> (x,x+1))

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Example of collecting returned values – Method 1

x (x, x+1)

a s

simpleState :: State s a

comp :: State s a

x :: a

xs :: [a]

st :: s

f :: s -> Bool

State Monad Methods
(2B)

46 Young Won Lim
7/6/19

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp

 xs <- collectUntil f comp

 return (x : xs)

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return []

 else step

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 1 and Method 2

Method 1

Method 2

State Monad Methods
(2B)

47 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computation of comp

-

-

0

1

1

2

0

0

1

1

2

2
s

3

comp (= simpleState)

x (x, x+1)

x (x, x+1)

x (x, x+1)

x (x, x+1)

x (x, x+1)

x (x, x+1)

external

internal

internal

result

result

result

State Monad Methods
(2B)

48 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Stateful Computations of put & get

a

(a, s)s
s

a

(a, s)s
s

()

((), ns)s
ns

s

(s, s)s
s

ns

get

put
()

State Monad Methods
(2B)

49 Young Won Lim
7/6/19

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp

 xs <- collectUntil f comp

 return (x : xs)

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

simpleState = state (\x -> (x,x+1))

get = state (\s -> (s, s))

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 1: steps of stateful computations

get st←0 comp : 0 → (0, 1) x←0

get st←1 comp : 1 → (1, 2) x←1

get st←2 comp : 2 → (2, 3) x←2

get st←3 comp : 3 → (3, 4) x←3

get st←4 comp : 4 → (4, 5) x←4

get st←5 comp : 5 → (5, 6) x←5

get st←6 comp : 6 → (6, 7) x←6

get st←7 comp : 7 → (7, 8) x←7

get st←8 comp : 8 → (8, 9) x←8

get st←9 comp : 9 → (9, 10) x←9

get st←10 comp : 10→(10, 11) x←10

stateful computation

State Monad Methods
(2B)

50 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 1: merge steps of collecting

collectUntil f comp = do

 10 <- get

 if f 10 then return []

 else do

 10 <- comp

 xs <- collectUntil f comp

 return (10 : xs) 10:[] = [10]

collectUntil f comp = do

 11 <- get

 if f 11 then return []

 else do

 10 <- comp

 xs <- collectUntil f comp

 return (10 : xs)

0: (1: (2: (3: (4: (5: (6: (7: (8: (9: (10: []))))))))))

0: (1: (2: (3: (4: (5: (6: (7: (8: (9: [10])))))))))

0: (1: (2: (3: (4: (5: (6: (7: (8: [9,10]))))))))

0: (1: (2: (3: (4: (5: (6: (7: [8,9,10])))))))

0: (1: (2: (3: (4: (5: (6: [7,8,9,10]))))))

0: (1: (2: (3: (4: (5: [6,7,8,9,10])))))

0: (1: (2: (3: (4: [5,6,7,8,9,10]))))

0: (1: (2: (3: [4,5,6,7,8,9,10])))

0: (1: (2: [3,4,5,6,7,8,9,10]))

0: (1: [2,3,4,5,6,7,8,9,10])

0: [1,2,3,4,5,6,7,8,9,10]

[0, 1,2,3,4,5,6,7,8,9,10]

State Monad Methods
(2B)

51 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 1: return steps of collecting

0: (1: (2: (3: (4: (5: (6: (7: (8: (9: (10: []))))))))))

0: (1: (2: (3: (4: (5: (6: (7: (8: (9: [10])))))))))

0: (1: (2: (3: (4: (5: (6: (7: (8: [9,10]))))))))

0: (1: (2: (3: (4: (5: (6: (7: [8,9,10])))))))

0: (1: (2: (3: (4: (5: (6: [7,8,9,10]))))))

0: (1: (2: (3: (4: (5: [6,7,8,9,10])))))

0: (1: (2: (3: (4: [5,6,7,8,9,10]))))

0: (1: (2: (3: [4,5,6,7,8,9,10])))

0: (1: (2: [3,4,5,6,7,8,9,10]))

0: (1: [2,3,4,5,6,7,8,9,10])

0: [1,2,3,4,5,6,7,8,9,10]

[0, 1,2,3,4,5,6,7,8,9,10]

return []

return [10]

return [9,10]

return [8,9,10]

return [7,8,9,10]

return [6,7,8,9,10]

return [5,6,7,8,9,10]

return [4,5,6,7,8,9,10]

return [3,4,5,6,7,8,9,10]

return [2,3,4,5,6,7,8,9,10]

return [1,2,3,4,5,6,7,8,9,10]

return [0, 1,2,3,4,5,6,7,8,9,10]

([], 11)

([10], 11)

([9,10], 11)

([8,9,10], 11)

([7,8,9,10], 11)

([6,7,8,9,10], 11)

([5,6,7,8,9,10], 11)

([4,5,6,7,8,9,10], 11)

([3,4,5,6,7,8,9,10], 11)

([2,3,4,5,6,7,8,9,10], 11)

([1,2,3,4,5,6,7,8,9,10], 11)

([0, 1,2,3,4,5,6,7,8,9,10], 11)

State Monad Methods
(2B)

52 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 1: branch within a do block

the same return
monadic type value

nesting do statement

- is possible if they are within the same monad

- enables branching within one do block,

as long as both branches of the if statement

results in the same monadic type.

collectUntil f comp = do

 st <- get

 if f st then return [] –--------------------------------- return State t [a] type

 else do

 x <- comp -- stateful computation

 xs <- collectUntil f comp

 return (x : xs) –--------------------------------- return State t [a] type

x :: a

xs :: [a]

(x : xs) :: [a]

0: (1: (2: (3: (4: (5: (6: (7: (8: (9: (10: []))))))))))

State Monad Methods
(2B)

53 Young Won Lim
7/6/19

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp

 xs <- collectUntil f comp

 return (x : xs)

return :: State t [a] type

collectUntil f comp :: State t [a] type

xs <- collectUntil f comp -- stateful computation

xs :: [a]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 1: return stateful compuation

t -> ([a], t)
the result type

State t [a]

State Monad Methods
(2B)

54 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 1: the inferred function type

(>10) :: (t -> Bool)

simpleState :: State t a

collectUntil (>10) simpleState :: State t [a]

Inferred Function Type

collectUntil :: Monad State t m => (t -> Bool) -> m a -> m [a]

m State t

Specific Function Type

collectUntil :: (t -> Bool) -> State t a -> State t [a]

*Main> evalState (collectUntil (>10) simpleState) 0

simpleState = state (\x -> (x,x+1))

State Monad Methods
(2B)

55 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp -- updating stateful computation

 liftM (a :) continue

 continue = do b <- get -- current state getting stateful computation

 if f b then return []

 else step

*Main> evalState (collectUntil (>10) simpleState) 0

[0,1,2,3,4,5,6,7,8,9,10]

simpleState = state (\x -> (x,x+1))

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Another implementation of collecting returned values

State Monad Methods
(2B)

56 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp -

 liftM (a :) continue

 continue = do b <- get

 if f b then return []

 else step

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: other representation

 step = do a <- comp -

 liftM (a :) do b <- get

 if f b then return []

 else step

 step = do a <- comp -

 liftM (a :) do b <- get

 if f b then return [] else step

State Monad Methods
(2B)

57 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return [] else step

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: the return type

Since a is part of the result in
both branches of the 'if'

a is the common part of
both ‘then’ part and ‘else’ part

returns only once
at the last iteration

continue :: State s [a]

liftM (a :) continue :: State s [a]

State Monad Methods
(2B)

58 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return [] else step

a :: a

continue :: State s [a]

liftM (a :) continue :: State s [a]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: liftM to merge

 (:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

 (:) :: a -> [a] -> [a]

liftM (:) :: a -> State s [a] -> State s [a]

 (a :) :: [a] -> [a]

liftM (a :) :: State s [a] -> State s [a]

liftM (a :) continue :: State s [a]

return :: State t [a] type

collectUntil f comp :: State t [a] type

continue :: State t [a] type

State Monad Methods
(2B)

59 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return [] else step

a <- comp

b <- get

return []

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: steps of stateful computations

comp : 0 → (0, 1) a←0 get : b←1

comp : 1 → (1, 2) a←1 get : b←2

comp : 2 → (2, 3) a←2 get : b←3

comp : 3 → (3, 4) a←3 get : b←4

comp : 4 → (4, 5) a←4 get : b←5

comp : 5 → (5, 6) a←5 get : b←6

comp : 6 → (6, 7) a←6 get : b←7

comp : 7 → (7, 8) a←7 get : b←8

comp : 8 → (8, 9) a←8 get : b←9

comp : 9 → (9, 10) a←9 get : b←10

comp : 10→(10, 11) a←10 get : b←11

stateful computation

State Monad Methods
(2B)

60 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do 10 <- comp

 liftM (10 :) continue

 continue = do 11 <- get

 if f 11 then return [] else step

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: merge computation steps

(>10)

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) (liftM (4:) (liftM (5:) (liftM (6:) (liftM (7:) (liftM (8:) (liftM (9:) (liftM (10:) ([],11)))))))))))

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) (liftM (4:) (liftM (5:) (liftM (6:) (liftM (7:) (liftM (8:) (liftM (9:) ([10],11)))))))))))

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) (liftM (4:) (liftM (5:) (liftM (6:) (liftM (7:) (liftM (8:) ([9,10],11))))))))))

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) (liftM (4:) (liftM (5:) (liftM (6:) (liftM (7:) ([8,9,10],11)))))))))

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) (liftM (4:) (liftM (5:) (liftM (6:) ([7,8,9,10],11))))))))

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) (liftM (4:) (liftM (5:) ([6,7,8,9,10],11)))))))

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) (liftM (4:) ([5,6,7,8,9,10],11))))))

(liftM (0:) (liftM (1:) (liftM (2:) (liftM (3:) ([4,5,6,7,8,9,10],11)))))

(liftM (0:) (liftM (1:) (liftM (2:) ([3,4,5,6,7,8,9,10],11))))

(liftM (0:) (liftM (1:) ([2,3,4,5,6,7,8,9,10],11)))

(liftM (0:) ([1,2,3,4,5,6,7,8,9,10],11))

[0,1,2,3,4,5,6,7,8,9,10]

State Monad Methods
(2B)

61 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: comp, get, return

State
(0, 1) 0

a=0

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return []

 else step

a <- comp

b <- get State
(1, 1) 1

b=1

return [33] State
([33], 1) 1

[33]

state (\x -> (x,x+1))

State Monad Methods
(2B)

62 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: steps of a<-comp, b<-get

State
(1, 2) 1

a=1

State
(0, 1) 0

a=0

State
(2, 3) 2

a=2

State
(3, 4) 3

a=3

State
(4, 5) 4

a=4

State
(5, 6) 5

a=5

State
(6, 7) 6

a=6

State
(8, 9) 8

a=8

State
(7, 8) 7

a=7

State
(9, 10) 9

a=9

State
(10, 11) 10

a=10

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return []

 else step

b=2

b=1

b=3

b=4

b=5

b=6

b=7

b=9

b=6

b=10

b=11

State Monad Methods
(2B)

63 Young Won Lim
7/6/19

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Method 2: steps of continue

State
(1, 2) 1

liftM (1:) continue

State
(0, 1) 0

liftM (0:) continue

State
(2, 3) 2

liftM (2:) continue

State
(3, 4) 3

liftM (3:) continue

State
(4, 5) 4

liftM (4:) continue

State
(5, 6) 5

liftM (5:) continue

State
(6, 7) 6

liftM (6:) continue

State
(8, 9) 8

liftM (8:) continue

State
(7, 8) 7

liftM (7:) continue

State
(9, 10) 9

liftM (9:) continue

State
(10, 11) 10

liftM (10:) ([], 11)

b=2

b=1

b=3

b=4

b=5

b=6

b=7

b=9

b=6

b=10

b=11

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return []

 else step

State Monad Methods
(2B)

64 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return [] else step

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp

 xs <- collectUntil f comp

 return (x : xs)

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Sequence comparison

update the current state

then get and then merge

get the current state

then update and merge

Method 2

Method 1

State Monad Methods
(2B)

65 Young Won Lim
7/6/19

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f comp = step

 where

 step = do a <- comp

 liftM (a :) continue

 continue = do b <- get

 if f b then return [] else step

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp

 xs <- collectUntil f comp

 return (x : xs)

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Merge comparison

Since a is part of the result in both
branches of the 'if'

a is the common part of both ‘then’ part
and ‘else’ part

continue :: State s [a]

liftM (a :) continue :: State s [a]

xs :: [a]

x : xs :: [a]

retuns the list of results

Method 2

Method 1

State Monad Methods
(2B)

66 Young Won Lim
7/6/19

import Control.Monad.Trans.State

collectUntil f comp = do

 st <- get

 if f st then return []

 else do

 x <- comp

 xs <- collectUntil f comp

 return (x : xs)

simpleState :: State Int Int

simpleState = state $ \x -> (x,x+1)

-- evalState (collectUntil (>10) simpleState) 0

-- [0,1,2,3,4,5,6,7,8,9,10]

https://stackoverflow.com/questions/11250328/working-with-the-state-monad-in-haskell

Example of collecting – source codes

import Control.Monad.Trans.State

import Control.Monad

simpleState :: State Int Int

simpleState = state $ \x -> (x,x+1)

-- evalState (collectUntil (>10) simpleState) 0

-- [0,1,2,3,4,5,6,7,8,9,10]

collectUntil :: (s -> Bool) -> State s a -> State s [a]

collectUntil f s = step

 where

 step = do a <- s

 liftM (a:) continue

 continue = do s' <- get

 if f s'

 then return []

 else step

State Monad Methods
(2B)

67 Young Won Lim
7/6/19

liftM :: (Monad m) => (a -> b) -> m a -> m b

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

liftM lifts a function of type a -> b to a monadic counterpart.

mapM applies a function which yields a monadic value to a list of values,

yielding list of results embedded in the monad.

> liftM (map toUpper) getLine

Hallo

"HALLO"

> :t mapM return "monad"

mapM return "monad" :: (Monad m) => m [Char]

https://stackoverflow.com/questions/5856709/what-is-the-difference-between-liftm-and-mapm-in-haskell

liftM and mapM

State Monad Methods
(2B)

68 Young Won Lim
7/6/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68

