
Young Won Lim
10/2/19

Monad P2 : State Transformer Basics (1A)

Young Won Lim
10/2/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Transformer
Basics (1A) 3 Young Won Lim

10/2/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

State Transformer
Basics (1A) 4 Young Won Lim

10/2/19

A State Transformer ST Example

in https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

a generic version of the State monad in Control.Monad.State.Lazy

a good example to learn State monad and general monads

do not be confused with monad transformers, StateT

and Control.Monad.ST (with reference variable STRef)

The ST monad in this example is similar to StateT monad

but is very different from the ST monad in Control.Monad.ST

State in Haskell, J. Launchbury, S. Pe Jones, 2016

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer

State Transformer
Basics (1A) 5 Young Won Lim

10/2/19

A state transformer of type (ST s a) is a computation

which transforms a state indexed by type s ,

and delivers a value of type a .

You can think of it as a pure function,

taking a state as its argument,

and delivering a state and a value as its result.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

A state transformer – a pure function

State in State out

result

State Transformer
Basics (1A) 6 Young Won Lim

10/2/19

From a semantic point of view,

this is a purely-functional account of state.

being a pure function,

a state transformer is a first-class value:

it can be passed to a function,

returned as a result,

stored in a data structure,

duplicated freely, and so on.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

A state transformer : a first-class value

State in State out

result

State in State out

result

State Transformer
Basics (1A) 7 Young Won Lim

10/2/19

we take the term state transformer to be synonymous

with stateful computation:

the computation is seen

as transforming one state into another.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

A state transformer – a stateful computation

State in State out

result

state transformer

stateful computation

State Transformer
Basics (1A) 8 Young Won Lim

10/2/19

A state transformer can have

other inputs besides the state;

if so, it will have a functional type.

It can also have many results,

by returning them in a tuple.

a state transformer with two inputs of type Int ,

and two results of type Int and Bool

Int -> Int -> ST s (Int,Bool)

functional type

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

A State Transformer – a functional type and a tuple

State in State out

resultsinputs

State Transformer
Basics (1A) 9 Young Won Lim

10/2/19

The simplest state transformer, returnST ,

simply delivers a value without a affecting the state at all:

returnST :: a -> ST s a

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

A state transformer – returnST

State in State out

resultinput

State Transformer
Basics (1A) 10 Young Won Lim

10/2/19

Monad Transformers:

special types that allow us to roll two monads into

a single one that shares the behavior of both.

MaybeT define a monad transformer that gives the IO monad

some characteristics of the Maybe monad

Precursor monad refers to

the non-transformer monad (e.g. Maybe in MaybeT)

on which a transformer is based

Base monad refers to the other monad

(e.g. IO in MaybeT IO) on which the transformer is applied.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Monad Transformer

IO (Maybe String)

MaybeT IO String

State Transformer
Basics (1A) 11 Young Won Lim

10/2/19

Precursor Transformer Original Type Combined Type

by precursor by transformer

Writer WriterT (a, w) m (a, w)

Reader ReaderT r -> a r -> m a

State StateT s -> (a, s) s -> m (a, s)

Cont ContT (a -> r) -> r (a -> m r) -> m r

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Some Monad Transformer Examples

IO (Maybe String)

MaybeT IO String

State Transformer
Basics (1A) 12 Young Won Lim

10/2/19

type State = ...

type ST = State -> State -- a function type

about functions that manipulate some kind of state

this state can be represented by a type (State)

a state transformer ST a state manipulating function

takes the current state as its argument

produces a modified state as its result

which reflects any side effects performed by the function:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer (ST)

a state tansformer ST
not Monad Transformer

State Transformer
Basics (1A) 13 Young Won Lim

10/2/19

type State = ...

type ST = State -> State

type ST a = State -> (a, State)

generalized state transformers

return a result value in addition to the modified state

 specify the result type as a parameter of the ST type

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generalized State Transformer

State Transformer
Basics (1A) 14 Young Won Lim

10/2/19

type ST a = State -> (a, State)

Types

State -> (a, State)

Values

 s (x, s’)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Types and Values

func
State (a, State)

funcs (x, s’)

A function is also a value
func :: ST a
func :: State -> (a, State)

x :: a the result value
s :: State input state value
s’ :: State output state value

State Transformer
Basics (1A) 15 Young Won Lim

10/2/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

func and func s type signatures

func :: ST a

x :: a

s :: State

s’ :: State

func :: ST a

func :: State -> (a, State)

func s (x, s’)

func s :: (a, State)

s :: State

application of

input s gives

output (x, s’)

type ST a = State -> (a, State)

func :: ST a func :: State -> (a, State)

func s (x, s’) func s :: (a, State)

State Transformer
Basics (1A) 16 Young Won Lim

10/2/19

type ST a = State -> (a, State) generalized state transformer

 st s (x, s’)

type ST a = State -> (a, State)

 st s (x, s’)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Function input and output types

(a_result, updated_state) :: (a, State)

 st s :: ST a State st s :: (a, State)

(x, s’) :: ST a State (x, s’) :: (a, State)

st
State (a, State)

 s (x, s’)
st :: ST a
s :: State
(x, s’) :: (a, State)

st :: ST a
s :: State
st s :: (a, State)

application of

input s gives

output (x, s’)

st s (x, s’)

st s (x, s’)

State Transformer
Basics (1A) 17 Young Won Lim

10/2/19

type ST Int = State -> (Int, State)

How to convert ST Int into a state transformer

that takes a character and returns an integer ?

further generalization of the state transformer ST

which takes an argument of type b

● no need to use more generalized ST type

● instead, use currying.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Taking an additional argument

type ST2 a b

type ST3 b a

type ST2 a b = b -> State -> (a, State)

type ST3 b a = b -> State -> (a, State)

State Transformer
Basics (1A) 18 Young Won Lim

10/2/19

type ST a = State -> (a, State) generalized ST

type ST3 b a = b -> State -> (a, State) further generalized ST

 b -> ST a = b -> State -> (a, State) think currying

a state transformer

that takes a character

and returns an integer

would have type Char -> ST Int

Char -> State -> (Int, State) curried form

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Curried Generalized State Transformer

f x y

(f x) y

g y

f :: a -> b -> c

g :: b -> c

f :: a -> (b -> c)

f x returns a function of type b -> c

* Curried Function

State Transformer
Basics (1A) 19 Young Won Lim

10/2/19

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

ST : an instance of a monadic type

return converts a value (x)

into a state transformer (s ->(x,s))

that simply returns that value (x)

without modifying the state (s → s)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad Instance – return method

State (a, State)

 s (x, s)

a function is a value

return x returns
a value of ST a type

to execute this function
an argument to s is necessary

type ST …. instances (X)
data ST … instances (O)

State Transformer
Basics (1A) 20 Young Won Lim

10/2/19

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

sequencing state transformers: st >>= f

● the 1st state transformer st (1) input monad (update + compute)

● the 2nd state transformer (f x) (2) return monad (result argument)

1) apply st to an initial state s, to get (x,s')

2) apply the function f to the x, the value of result

3) apply (f x) to the updated state s'

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad Instance – >>= method

st s (x,s')

f x s' (y,s')

st >>= f = \s -> f x s'

where (x,s') = st s

st >>= f = \s -> (y,s')

where (x,s') = st s

 (y,s') = f x s'

State Transformer
Basics (1A) 21 Young Won Lim

10/2/19

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

st :: ST a

f :: a -> ST b

(>>=) :: ST a -> (a -> ST b) -> ST b

st :: State -> (a, State)

f :: a -> State -> (b, State)

(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)

type ST a = State -> (a, State)
https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The type signatures of the sequencer >>=

st
State (a, State)

 s (x, s’)

f x
State (b, State)

 s’ (y, s’)

st :: ST a

f x :: ST a

State Transformer
Basics (1A) 22 Young Won Lim

10/2/19

st :: State -> (a, State)

f :: a -> State -> (b, State)

(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)

st :: State -> (a, State)

st s :: (a, State)

f :: a -> State -> (b, State)

f x :: State -> (b, State)

f x s’ :: (b, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The type of st s and f x s’

st s (x,s')

f x s' (y,s')

s -> (x,s')

s' -> (y,s')

State Transformer
Basics (1A) 23 Young Won Lim

10/2/19

ST Monad - (>>=) operator type diagram

f x

>>=st :: ST a f x :: ST b

f x :: ST b

1st arg

monad

2nd arg

monad
returning
function monad

return

 (>>=) :: ST a -> (a -> ST b) -> ST b

st – state update
f x – result compute

State Transformer
Basics (1A) 24 Young Won Lim

10/2/19

ST Monad - (>>=) execution of st & f x

st s (x, s’)

 s’ (y, s’) f x

:: ST a

:: a -> ST b

>>=

f x

 s’ (y, s’) f x

:: ST b

st – state update
f x – result compute

State Transformer
Basics (1A) 25 Young Won Lim

10/2/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad – return and >>=

(–,s) (x,s’) (y,s’)

st s (x,s')

f x s' (y,s')

s (x,s)

s’ (y,s’)

return x

st >>= f

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

a function is a value

:: ST a

:: ST b

State Transformer
Basics (1A) 26 Young Won Lim

10/2/19

instance Monad [] where

 -- return :: a -> [a]

 return x = [x]

 -- (>>=) :: [a] -> (a -> [b]) -> [b]

 xs >>= f = concat (map f xs)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List, Maybe, and ST Monads

instance Monad Maybe where

 -- return:: a->Maybe a

 return x = Just x

 -- (>>=) ::

 Maybe a -> (a -> Maybe b) -> M aybe b

 Nothing >>= _ = Nothing

 (Just x) >>= f = f x

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

State Transformer
Basics (1A) 27 Young Won Lim

10/2/19

type ST a = State -> (a, State) instances, constructor (X)

data ST0 a = DC (State -> (a, State)) instances, constructor (O)

to make instances

use the data mechanism instead of type

with a dummy constructor (DC)

pattern matching purpose – any name is ok

data ST0 a = ST0 (State -> (a, State))

ST0 instead of DC – widely used convention

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Dummy Constructor DC

instance Monad ST where ...

instance Monad ST0 where ...

State Transformer
Basics (1A) 28 Young Won Lim

10/2/19

data ST0 a = DC (State -> (a, State))

to remove (unwrap) the dummy constructor,

the application function apply0 is defined

apply0 :: ST0 a -> State -> (a, State)

 input output

pattern matching is used

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The application function apply0

an accessor function

like a runState function

State Transformer
Basics (1A) 29 Young Won Lim

10/2/19

data ST0 a = DC (State -> (a, State))

apply0 :: ST0 a -> State -> (a, State) unwrapping function

 input output

DC :: (State -> (a, State)) -> ST0 a wrapping function

input output

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

apply0 and DC

an accessor function
like a runState function

State Transformer
Basics (1A) 30 Young Won Lim

10/2/19

data ST0 a = DC (State -> (a, State)) Data Constructor

apply0 :: ST0 a -> State -> (a, State) Application Function

apply0 (DC g) :: State -> (b, State) pattern matching

apply0 (DC g) = g

apply0 (DC g) s = g s

s :: State

g :: State -> (a, State)

g s :: (a, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Unwrapping Data Constructor using (DC g)

(.) :: (b->c) -> (a->b) -> (a->c)

f . g = \x -> f (g x)

f . g x = f (g x)

(DC . f) x = DC (f x)

not a composite function

but a function argument

(DC g) :: DC (State -> (b, State))

(DC g) :: ST0 a

State Transformer
Basics (1A) 31 Young Won Lim

10/2/19

type ST a = State -> (a, State)

st :: State -> (a, State)

st = \s -> (s, s+1)

st s :: (a, State)

f :: a -> ST a

f x :: State -> (b, State)

f x s :: (b, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST a and ST0 a

data ST0 a = DC (State -> (a, State))

 st0 :: DC (State -> (a, State))

 st0 = DC (\s -> (s, s+1))

apply0 st0 :: State -> (a, State)

apply0 st0 s :: (a, State)

 f :: a -> ST0 a

 f x :: ST0 a

 f x :: DC (State -> (a, State))

apply0 f x :: State -> (a, State)

apply0 f x s :: (b, State)

No data constructor With a data constructor : DC

State Transformer
Basics (1A) 32 Young Won Lim

10/2/19

type ST a = Int -> (a, Int)

data ST0 a = DC (Int -> (a, Int))

st :: ST Int

st = (\s -> (s, s+1))

st0 :: ST0 Int

st0 = DC (\s -> (s, s+1))

apply0 :: ST0 a -> Int -> (a, Int)

apply0 (DC f) = f

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST a and ST0 a Examples

:load t.hs

 …

*Main> :t st

st :: ST Int

*Main> :t st0

st0 :: ST0 Int

*Main> :t st 3

st 3 :: (Int, Int)

*Main> :t apply0 st0 3

apply0 st0 3 :: (Int, Int)

*Main>

t.hs

State Transformer
Basics (1A) 33 Young Won Lim

10/2/19

data ST0 a = DC (State -> (a, State))

apply0 :: ST0 a -> State -> (a, State)

apply0 (DC f) x = f x

apply0 st0 s = (x,s') s → (x,s')

apply0 f x s’ = (y,s') s' → (y,s')

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

apply0 st0 s and apply0 f x s’

st0 :: ST0 a

st0 :: DC (State -> (a, State))

st0 = DC (\s -> (s, s+1))

apply0 st0 s :: (a, State)

f :: a -> ST0 a

f :: a -> DC (State -> (b, State))

f x :: DC (State -> (b, State))

apply0 f x s’ :: (b, State)

(–,s) (x,s’) (y,s’)

apply0 st0 s (x,s') apply0 f x s' (y,s')

State Transformer
Basics (1A) 34 Young Won Lim

10/2/19

 st >>= f = \s -> let (x,s') = st s in f x s'

 st0 >>= f = DC (\s -> let (x, s') = apply0 st s in apply0 f x s')

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

st0 >> f using apply0

type ST a = State -> (a, State)

data ST0 a = DC (State -> (a, State))

st s (x,s')

f x s' (y,s')

s → (x,s')

s' → (y,s')

binding

variables

s → (x,s')

s' → (y,s')

apply0 st0 s (x,s')

apply0 f x s (y,s')

(1) (2)

(1) (2)

State Transformer
Basics (1A) 35 Young Won Lim

10/2/19

instance Monad ST0 where

 -- return :: a -> ST0 a

 return x = DC (\s -> (x,s))

 -- (>>=) :: ST0 a -> (a -> ST0 b) -> ST0 b

 st >>= f = DC(\s -> let (x, s') = apply0 st s in apply0 (f x) s')

the runtime overhead of manipulating the dummy constructor DC

can be eliminated by defining ST0 using the newtype mechanism

efficiency – enable pointers

data ST0 a = DC (State -> (a, State))

newtype ST0 a = DC (State -> (a, State))

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST0 and ST Monad Instance

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

State Transformer
Basics (1A) 36 Young Won Lim

10/2/19

a value of type ST a (or ST0 a) is simply

an action that returns an a value.

(like state processor function of State Monad)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A value of type ST0 a

action

function is a value

State -> (a, State)

function is executable

– taking the inputs

– giving its output

– taking s giving (x, s’)

– taking s’ giving (y, s’)

st
State (a, State)

 s (x, s’)
f x

State (b, State)

 s’ (y, s’)

st :: ST a f x :: ST a

result: an a value result: an a value

ST a

input input

State Transformer
Basics (1A) 37 Young Won Lim

10/2/19

the apply0 allows us

to execute an action from some initial state.

(like runState accessor function of State Monad)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing a value of type ST0 a

st
State (a, State)

f x
State (b, State)

st :: ST a f x :: ST a

 s (x, s’)

apply0 st s (x, s’) apply0 f x s (x, s’)

 s’ (x, s’)

apply0 function input output

State Transformer
Basics (1A) 38 Young Won Lim

10/2/19

The sequencing combinators (>>) allow us

to combine simple actions to get bigger actions,

(>>) :: Monad m => m a -> m b -> m b;

(>>=) :: Monad m => m a -> (a -> m b) -> m b;

a1 >> a2 takes the actions a1 and a2 and

returns the mega action which is

a1-then-a2-returning-the-value-returned-by-a2.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Sequencing Combinator (>>)

monad

monad returning function

State Transformer
Basics (1A) 39 Young Won Lim

10/2/19

the >>= sequencer is kind of like >>

(>>=) :: Monad m => m a -> (a -> m b) -> m b;

only it allows you to “remember” intermediate values

that may have been returned.

return :: a -> ST0 a

takes a value x and yields an action

that doesn’t actually change the state,

but just returns the same value x

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Sequencer (>>=) and return

action

the same state

remember x

intermediate

return

State (a, State)

 s (x, s)

a function is a value

State Transformer
Basics (1A) 40 Young Won Lim

10/2/19

pairs :: [a] -> [b] -> [(a,b)] do method

pairs xs ys = do x <- xs

 y <- ys

 return (x, y)

this function returns all possible ways

of pairing elements from two lists

each possible value x from the list xs x <- xs

each possible value y from the list ys y <- ys

return the pair (x, y).

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Do Notation Example

State Transformer
Basics (1A) 41 Young Won Lim

10/2/19

pairs :: [a] -> [b] -> [(a,b)] do method

pairs xs ys = do x <- xs

 y <- ys

 return (x, y)

pairs xs ys = [(x, y) | x <- xs, y <- ys] comprehension notation

In fact, there is a formal connection

between the do notation and

the comprehension notation.

simply different shorthands

for repeated use of the >>= operator for lists.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Comprehension Notation Example

x <- xs

x
1
 x

2
 x

3
 x

4
 x

5

y <- ys

y
1
 y

2
 y

3
 y

4
 y

5

Generators

State Transformer
Basics (1A) 42 Young Won Lim

10/2/19

the state processing function can be defined

using the notion of a state transformer,

in which the internal state is simply the next fresh integer

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

return next state

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Counter Example (1)

State Transformer
Basics (1A) 43 Young Won Lim

10/2/19

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

In order to generate a fresh integer,

we define a special state transformer

that simply returns the current state as its result,

and the next integer as the new state:

Note that fresh is a state transformer

(where the State is itself just Int),

that is an action that happens to return integer values.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Counter Example (2)

State Transformer
Basics (1A) 44 Young Won Lim

10/2/19

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

ghci> apply0 wtf1 0

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (1)

wtf1 = DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1))

apply0 wtf1 = (\n -> (n, n+1)) >>

 (\n -> (n, n+1)) >>

 (\n -> (n, n+1)) >>

 (\n -> (n, n+1))

State Transformer
Basics (1A) 45 Young Won Lim

10/2/19

data ST0 a = DC (State -> (a, State))

data ST0 a = DC (Int -> (a, Int))

data ST0 Int = DC (Int -> (Int, Int))

apply0 :: ST0 a -> State -> (a, State)

apply0 :: ST0 a -> Int -> (a, Int)

apply0 :: ST0 Int -> Int -> (Int, Int)

apply0 fresh 0 (0 , 1)

apply0 fresh 0 (0 , 1)

data ST0 a = DC (Int -> (a, Int))

apply0 :: ST0 a -> Int -> (a, Int)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (2) – executing a fresh

apply0 st s = (x,s') s → (x,s')

apply0 f x s = (y,s') s' → (y,s')

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

State Transformer
Basics (1A) 46 Young Won Lim

10/2/19

wtf1 0= DC (0 -> (0, 1)) >>

 DC (1 -> (1, 2)) >>

 DC (2 -> (2, 3)) >>

 DC (3 -> (3, 4))

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (3) – result is not used, state is updated

wtf1 0= DC (0 -> (0, 1)) >>

 DC (1 -> (1, 2)) >>

 DC (2 -> (2, 3)) >>

 DC (3 -> (3, 4))

internal state s

external output x

Not used result

Not used result

Not used result

Not used result

apply0 wtf1 0 =

 (0 -> (0, 1)) >> n=1

 (1 -> (1, 2)) >> n=2

 (2 -> (2, 3)) >> n=3

 (3 -> (3, 4)) n=4

(3,4)

State Transformer
Basics (1A) 47 Young Won Lim

10/2/19

apply0 wtf1 0

apply0 (fresh >> (fresh >> fresh >> fresh)) n (0 , 1)

apply0 (fresh >> (fresh >> fresh)) n (1 , 2)

apply0 (fresh >> (fresh)) n (2 , 3)

apply0 (fresh) n (3 , 4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (4) – input parameter is updated

Not used

wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

n = 0

n = 1

n = 2

n = 3

n = 1

n = 2

n = 3

n = 4

State Transformer
Basics (1A) 48 Young Won Lim

10/2/19

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n+0, n+1))

fresh >> fresh = DC (\n -> (n+1, n+2))

fresh >> fresh >> fresh = DC (\n -> (n+2, n+3))

fresh >> fresh >> fresh >> fresh = DC (\n -> (n+3, n+4))

wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (5) – equivalent expressions

wtf1 = DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1))

wtf1 = DC (\n -> (n+3, n+4))

State Transformer
Basics (1A) 49 Young Won Lim

10/2/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf2

apply0 wtf2 0 =

 (0 -> (0, 1)) >>=\n1 -> n=1, n1=0

 (1 -> (1, 2)) >>=\n2 -> n=2, n2=1

 (2 -> (2, 3)) >> n=3

 (3 -> (3, 4)) >> n=4

 return [n1, n2] ([0,1], 4)

wtf2 = fresh >>= \n1 -> n1 = 0 intermediate result

 fresh >>= \n2 -> n2 = 1 intermediate result

 fresh >>

 fresh >>

 return [n1, n2]

wtf2 = fresh >>=

 (\n1 -> fresh >>=

 (\n2 -> fresh >> fresh >> return [n1, n2]))

*Main> apply0 wtf2 0

([0,1],4)

f1: monad returning function

f2: monad returning function

intermediate result

intermediate result

State Transformer
Basics (1A) 50 Young Won Lim

10/2/19

wtf2' = do { n1 <- fresh; n1 = 0

 n2 <- fresh; n2 = 1

 fresh ;

 fresh ;

 return [n1, n2];

 }

do { ; ; } semicolon necessary

*Main> apply0 wtf2' 0

([0,1],4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf2‘

wtf2 = fresh >>= \n1 ->

 fresh >>= \n2 ->

 fresh >>

 fresh >>

 return [n1, n2]

State Transformer
Basics (1A) 51 Young Won Lim

10/2/19

wtf3 = do n1 <- fresh n1=0

 fresh

 fresh

 fresh

 return n1 3 → (0, 4) instead of (3, 4)

*Main> apply0 wtf3 0

(0,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf3

apply0 wtf3 0 =

 (0 -> (0, 1)) >>=\n1 -> n=1, n1=0

 (1 -> (1, 2)) >>=\n2 -> n=2

 (2 -> (2, 3)) >> n=3

 (3 -> (3, 4)) >> n=4

 return [n1, n2] (0, 4)

State Transformer
Basics (1A) 52 Young Won Lim

10/2/19

wtf4 = fresh >>= \n1 -> n1 = 0

 fresh >>= \n2 -> n2 = 1

 fresh >>= \n3 -> n3 = 2

 fresh >>

 return (n1+n2+n3)

*Main> apply0 wtf4 0

(3,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf4

apply0 wtf4 0 =

 (0 -> (0, 1)) >>=\n1 -> n=1, n1=0

 (1 -> (1, 2)) >>=\n2 -> n=2, n2=1

 (2 -> (2, 3)) >>=\n3 -> n=2, n3=2

 (3 -> (3, 4)) >> n=4

 return (n1+n2+3) (0+1+2, 4)

State Transformer
Basics (1A) 53 Young Won Lim

10/2/19

import Control.Applicative

import Control.Monad (liftM, ap)

instance Functor ST0 where

 fmap = liftM

instance Applicative ST0 where

 pure = return

 (<*>) = ap

https://stackoverflow.com/questions/31652475/defining-a-new-monad-in-haskell-raises-no-instance-for-applicative

Make Functor and Applicative Instances

newtype ST0 a = DC (Int -> (a, Int))

instance Monad ST0 where

 return x = DC(\s -> (x,s))

 st >>= f = DC(\s -> let (x, s') = apply0 st s

in apply0 (f x) s')

State Transformer
Basics (1A) 54 Young Won Lim

10/2/19

apply0 :: ST0 a -> Int -> (a, Int)
apply0 (DC f) = f

fresh :: ST0 Int
fresh = DC (\n -> (n, n+1))

wtf1 = fresh >>
 fresh >>
 fresh >>
 fresh

wtf2 = fresh >>= \n1 ->
 fresh >>= \n2 ->

 fresh >>
 fresh >>
 return [n1, n2]

Example Code Listing

wtf2' = do { n1 <- fresh ;
 n2 <- fresh ;
 fresh ;
 fresh ;
 return [n1, n2] ;
 }

wtf3 = do n1 <- fresh
 fresh
 fresh
 fresh
 return n1

wtf4 = fresh >>= \n1 ->
 fresh >>= \n2 ->
 fresh >>= \n3 ->
 fresh (n1+n2+n3)

State Transformer
Basics (1A) 55 Young Won Lim

10/2/19

*Main> :load st.hs
[1 of 1] Compiling Main (st.hs, interpreted)
Ok, modules loaded: Main.

*Main> apply0 (fresh) 0
(0,1)
*Main> apply0 (fresh >> fresh) 0
(1,2)
*Main> apply0 (fresh >> fresh >> fresh) 0
(2,3)
*Main> apply0 (fresh >> fresh >> fresh >> fresh) 0
(3,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Results

*Main> apply0 wtf1 0
(3,4)

*Main> apply0 wtf2 0
([0,1],4)

*Main> apply0 wtf2' 0

([0,1],4)

*Main> apply0 wtf3 0

(0,4)

*Main> apply0 wtf4 0

(3,4)

State Transformer
Basics (1A) 56 Young Won Lim

10/2/19

making a double, triple, quadruple, ... monad

by wrapping around existing monads

that provide wanted functionality.

You have an innermost monad (usually Identity or IO

but you can use any monad). You then wrap monad transformers

around this monad to make bigger, better monads.

To do stuff in an inner monad → cumbersome → monad transformers

https://wiki.haskell.org/Monad_Transformers_Explained

Transformer Stacks

a M a N M a O N M a

 lift $ lift $ lift $ foo

State Transformer
Basics (1A) 57 Young Won Lim

10/2/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57

