Link 8.A Dynamic Linking

Young W. Lim

2019-02-07 Thr

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 1/54

@ Based on

© Dynamic linking with a shared library example
@ example 1 : vector addition and multiplication
@ example 2 : swap

© Shared Libraries

@ Dynamic Linking

© Compiler options and paths for dynamic linking

@ Loading and linking shared libraries from Applications

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

Based on

"Self-service Linux: Mastering the Art of Problem Determination",

Mark Wilding
"Computer Architecture: A Programmer's Perspective",

Bryant & O'Hallaron

1, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Link 8.A Dynamic Linking

Compling 32-bit program on 64-bit gcc

gcec -v

gcc -m32 t.c

sudo apt-get install gcc-multilib
sudo apt-get install g++-multilib
gcc-multilib

g++-multilib

gcc -m32

objdump -m 1386

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 4 /54

TOC: Dynamic linking with shared library example

@ Compiler flags for dynamic linking

@ addvec.c and multvec.c

© libvec.so

Q main.c

Op

@ Steps of dynamic linking

@ Inputs and outputs dynamic linking steps

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 5/54

addvec.c and multvec.c

/*::::: addvec.c ::iriiiiiiiiiiiiiiiiiiiiik/
void addvec(int *x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)

z[i] = x[i] + y[il;

/*::i::i: multvec.c sriiiiiiiiiiitiiiiiiiiiiik/
void multvec(int #*x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)
z[i] = x[i] * y[il;

Young W. Lim Link 8.A Dynamic Linking

2019-02-07 Thr

6/54

/*::::: vector.h :i:iiiriiiiiiiiiiiiiiiiiiiok/
void addvec(int *x, int *y, int *z, int n);
void multvec(int *x, int *y, int *z, int n);

/*::i:i: main.c rrriiiiiiiiiiiiiciiiiiiiiiiik/
#include <stdio.h>
#include "vector.h"

int x[2] {1, 2};
int y[2] = { 3, 4};
int z[2];

int main() {

addvec(x, y, z, 2);
printf("z= [/d %d]\n", z[0], z[1]);

Young W. Lim Link 8.A Dynamic Linking

2019-02-07 Thr

compiler flags for dynamic linking

e -fPIC flag directs the compiler
to generate position independent code

@ -shared flag directs the linker
to create a shared object file

2019-02-07 Thr 8 /54

Young W. Lim Link 8.A Dynamic Linking

compiling commands

@ gcc -g -m32 -Wall -fPIC -c addvec.c
gcc -g -m32 -Wall -fPIC -c multvec.c
gcc -g -m32 -shared -o libvector.so addvec.o multvec.o

gcc -g -m32 -Wall -c main.c
gcc -g -m32 -o dynamicp main.o ./libvecotr.so

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./
export LD_LIBRARY_PATH

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 9/54

analyzing commands

$
$
$
$
$
$

readelf --segments nmain_dyn.out
objdump -d -s dynamicp

objdump -d -j .plt.got dynamicp
objdump -d -j .plt.got dynamicp
gdb ... disas, x/a Ox...., ¢

cat /proc/<pid>/map

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 10 /54

shared object 1ibvector.so

©Q gcc -m32 -c -fPIC addvec.c
e addvec.o
@ gcc -m32 -c -fPIC multvec.c
e multvec.o
© gcc -m32 -shared -o libvector.so addvec.o multvec.o

e libvector.so

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 11 /54

executable object p

@ gcc -m32 -c main.c
e main.o
@ gcc -m32 -0 p main.o ./libvector.so
°p
© LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./
© export LD_LIBRARY_PATH
o ./p

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 12 /54

Steps of dynamic linking

@ main2.c, vector.h = main2.0
e translators (cpp, ccl, as)

© main2.o0, libc.so, libvector.so = p2
o linker (14d)

© p2 = partially linked p2 in memory
o loader (execve)

© p2, libc.so, libvector.so = fully linked executable in memory
e dynamic linker (1d-1linux.so)

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 13 /54

Inputs and outputs dynamic linking steps

@ Linker 1d inputs

o relocatble object file :
main2.o

e relocation and symbol table information :
libc.so, libvector.so

@ Loader execve input
e partially linked executable object file :
p2
© Dynamic linker 1d-1inux.so inputs

o loaded

p2
e code and data :
libc.so, libvector.so

@ fully linke executable in memory

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 14 /54

/*¥::iiir oswap.c riiiiiititiiiitiiiiiiiiiik/
extern int buf[];

int *p0 = &buf [0];
int *pl;

void swap()

{
int tmp;
pl = &buf[1];
tmp = *p0;
*p0 = *pl;
*pl = tmp;

}

Young W. Lim Link 8.A Dynamic Linking

/*::::: main.c sriiriiiiiiiiiiiiiiiiiiiiiiok/
void swapQ);

int buf[2] = {1, 2};
int main()
{

swap() ;

return 0;

}

Young W. Lim Link 8.A Dynamic Linking

16 /54

compiling commands

@ gcc -m32 -Wall -fPIC -c swap.c -o swap_pic.o
gcc -shared -m32 -o libswap.so swap_pic.o

gcc -m32 -Wall -c main.c

gcc -m32 -o swap_dyn.out main.o ./libswap.so

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./

export LD_LIBRARY_PATH

Young W. Lim

Link 8.A Dynamic Linking

17 /54

analyzing commands

$
$
$
$
$
$

readelf --segments swap_dyn.out
objdump -d -s swap_dyn.out

objdump -d -j .plt.got swap_dyn.out
objdump -d -j .plt.got swap_dyn.out
gdb ... disas, x/a Ox...., ¢

cat /proc/<pid>/map

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 18 /54

TOC: Shared Libraries

@ Shared libraries
@ Shared libraries - only a single copy
© Shared libraries - shared in two ways

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 19 /54

Shared libraries

@ an object module

o that can be loaded at run time
e at an arbitrary memory address
o linked with a program in memory

@ also referred as shared object
with .so suffix

@ dynamic liking is performed by a dynamic linker
contained in the Id-linux.so interpreter

@ corresponds to DLLs (Dynamic Link Libraries) on MS Window

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 20 /54

Shared libraries - only a single copy

@ a sigle copy of .so file :
there is exactly one .so file
for a particular library

@ in case of static libraries
the contents are copied

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 21 /54

Shared libraries - shared in two ways

@ shared in two different ways

@ the code and data in a .so file
are shared by all the executable files
that reference the library

@ a single copy of the .text section
of a shared library in memory
can be shared by different running processes

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

TOC: Dynamic Linking

@ First link statistically and then link dynamically
@ The first partial link (static)

© The second complete link (dynamic)

@ The second complete link (relocation)

@ execution of dynamically linked file

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

First link statically and then link dynamically

@ basic idea :

o link some thing statically
when the executable file is created

o then complete the linking process dynamically
when the program is loaded into memory

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 24 /54

The first partial link (static)

@ none of the code or data sections are
actually copied from libvector.so
into the executable file

@ the linker copies some information about

e relocation
e symbol table

o this will allow references
to code and data in libvector.so
to be resolved at run time

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 25 /54

The second complete link (dynamic)

@ when the loader loads and runs the executable
it loads the partially linked executable

o if the executable contains .interp section (interpreter)
which contains the path name of the dynamic linker

@ the dynamic linker itself is a shared object 1d-1inux.so
@ instead of passing control to the application

@ the loader loads and runs the dynamic linker

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

The second complete link (relocation)

@ shared libraries are loaded in the area
starting at address 0x40000000

@ relocating the text and data of 1ibc.so
into some memory segment

@ relocating the text and the data of 1ibvector.so
into another memory segment

@ relocating any references in p2 to symbols
defned by 1ibc.so and libvector.so

Young W. Lim Link 8.A Dynamic Linking

2019-02-07 Thr

27 /54

execution of dynamically linked file

@ finally, the dynamic linker passes control to the application

@ from this point, the locations of
the shared libraries are fixed
and do not change during execution of the program

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 28 /54

TOC: Compiler options and paths for dynamic linking

-fPIC flag for dynamic linking
-fPIC vs -fPIC flagsO

-shared flag for dynamic linking
-shared flag

00000

locating shared libraries

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 29 /54

-fPIC compile option for dynamic linking

o Generate position-independent code (PIC) suitable
for use in a shared library,
if supported for the target machine.

o PIC code accesses all constant addresses
through a global offset table (GOT).

@ The dynamic loader resolves the GOT entries
when the program starts

Young W. Lim Link 8.A Dynamic Linking

2019-02-07 Thr

-fpic vs -fPIC compile options

@ the dynamic loader is not part of GCC;
it is part of the operating system.

o If the GOT size for the linked executable exceeds
a machine-specific maximum size, -fpic does not work;
in that case, recompile with -fPIC instead.

@ -fno-pic suppress producing a position independent object

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

-fno-pic compile option

@ -fno-pic suppress producing a position independent object

o does not use the GOT for global variables
e R38632 relocation type is used
instead of R38650T 32X

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 32/54

PIC pseduo-assembly examples

@ PIC : this would work whether the code was at address 100 or 1000
CURENT+10 : pc-relative addressing

100: COMPARE REG1, REG2
101: JUMP_IF_EQUAL CURRENT+10

111: NOP
@ Non-PIC : this will only work if the code is at address 100

111 : absolute addressing

100: COMPARE REG1, REG2
101: JUMP_IF_EQUAL 111

111: NOP

https://stackoverflow.com/questions/5311515/gcc-fpic-option

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

PIC code and data section characteristics

@ The code section

e no absolute addresses that need relocation
o only self relative addresses.

@ The data section

e not shared between multiple processes
because it often contains writeable data.
e contain pointers or addresses that need relocation.

https://stackoverflow.com/questions/5311515/gcc-fpic-option

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

PIC public function and data characteristics

@ All public functions and public data can be overridden in Linux.

o If a function in the main executable has the same name
as a function in a shared object,
then the version in main will take precedence,
not only when called from main,
but also when called from the shared object.

@ when a global variable in main has the same name
as a global variable in the shared object,
then the instance in main will be used,
even when accessed from the shared object.

https://stackoverflow.com/questions/5311515/gcc-fpic-option

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 35 /54

-shared flag for dynamic linking

@ -shared

o Create a shared library.
e This is currently only supported on ELF,
XCOFF and SunOS platforms.

@ -soname=name

e When creating an ELF shared object, set
the internal DT__SONAME field to the specified name.

e When an executable is linked with a shared object
which has a DT _SONAME field, then when the executable
is run the dynamic linker will attempt
to load the shared object specified by the DT SONAME field
rather than the using the file name given to the linker.

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

-static linker option

@ -static
e Do not link against shared libraries.
e You may use this option multiple times on the command line:
e it affects library searching for -l options which follow it.
e This option also implies --unresolved-symbols=report-all.
e This option can be used with -shared.

@ Doing so means that a shared library is being created
but that all of the library’s external references
must be resolved by pulling in entries from static libraries.

e can observe absolute addresses for external global variables
as with -no-pie

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

-no-pie linker option

@ -no-pie

e not produce a position independent executable
by default, a position independent executable is produced
e can observe absolute addresses for external global variables

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 38 /54

locating shared libraries (1)

@ Any directories specified by -rpath-1link options.
o only effective at link time

@ Any directories specified by rpath options.

e used at runtime
e supported by native linkers
e supported by cross linkers
that are configured with --with-systroot

@ On an ELF system, for native linkers
if the -rpath and -rpath-link options were not used
search the contents of the environment variable
LD_RUN_PATH

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

locating shared libraries (2)

On SunQS, if the -rpath option was not used,
search any directories specified using -L options.

For a native linker,
search the contents of the environment variable
LD_LIBRARY_PATH

For a native ELF linker,

the directories in DT_RUNPATH or DT_RPATH
of a shared library are searched for

shared libraries needed by it.

The DT_RPATH entries are ignored

if DT_RUNPATH entries exist.

Young W. Lim Link 8.A Dynamic Linking

2019-02-07 Thr

locating shared libraries (3)

@ The default directories,
normally /1ib and /usr/1lib.

@ For a native linker on an ELF system,
if the file /etc/1d.so.conf exists,
the list of directories found in that file.

Young W. Lim Link 8.A Dynamic Linking

2019-02-07 Thr

41/54

https://stackoverflow.com/questions/25084855/
how-does-gcc-shared-option-affect-the-output
https://unix.stackexchange.com/questions/475/
how-do-so-shared-object-numbers-work
https://stackoverflow.com/questions/12237282/
whats-the-difference-between-so-la-and-a-library-files

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

https://stackoverflow.com/questions/25084855/how-does-gcc-shared-option-affect-the-output
https://stackoverflow.com/questions/25084855/how-does-gcc-shared-option-affect-the-output
https://unix.stackexchange.com/questions/475/how-do-so-shared-object-numbers-work
https://unix.stackexchange.com/questions/475/how-do-so-shared-object-numbers-work
https://stackoverflow.com/questions/12237282/whats-the-difference-between-so-la-and-a-library-files
https://stackoverflow.com/questions/12237282/whats-the-difference-between-so-la-and-a-library-files

TOC: Loading and linking shared libraries from Applications

@ Dynamic Linker Interface
dl_open

dlsym

dlclose

dlerror

an example for application’s dynamic linking

©0 0000

compiler options

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 43 /54

Dynamic Linker vs. Applications

@ the dynamic linker loads and links shared libraries
when application is loaded, just before it executes

@ an applications can also request the dynamic linker
to load and link arbitrary shared libraries
while the application is running
without having to link in the applications
against those libraries at compile time

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 44 /54

Dynamic Linker In

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);
returns ptr to handle if OK, NULL on error

void *dlsym(void *handle, char *symbol);
returns ptr to symbol if OK, NULL on error

int dlclose (void *handle);
returns zero if 0K, -1 on error

const char *delerror(void);
returns error message if previous call
to dlopen, dlsym, dlclose failed
NULL if previous call is OK

Young W. Lim Link 8.A Dynamic Linking

void *dlopen(const char *filename, int flag)

@ loads and links the shared library filename

@ the external symbols in filename are resolved
using libraries previously opened with the RTLD_GLOBAL flag

o if the current was compiled with rdynamic flag,
then its global symbols are also available for symbol resolution

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

dlopen (2)

void *dlopen(const char *filename, int flag);

e the flag argument must include

o RTLD_NOW

tells the linker to resolve references immediately
o RTLD_LAZY

tells the linker to defer symbol resolution

until the code from the library is executed
e RTLD_GLOBAL flag can be or'ed

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

void *dIsym(void *handle, char *symbol);
@ inputs

e a handle to a previously opened shared library
e a symbol name

@ returns the address of the symbol if it exists
or NULL otherwise

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

int dlclose (void *handle);

@ unloads the shared library
if no other shared libraries are still using it

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 49 /54

const char *delerror(void);

@ returns a string describing the most recent error
that occurred as a result of calling
dlopen, dlsym, dlclose
or NULL if no error occurred

2019-02-07 Thr

Young W. Lim Link 8.A Dynamic Linking

an example for an application’s dynamic linking (1)

#include <stdio.h>
#include <dlfcn.h>

int x[2] = {1,2};
int y[2] = {3,4};
int z[2];

int main() {
void *handle;
void (*addvec) (int*, int*, int*, int);
char *error;

handle = dlopen("./libvector.so", RTLD_LAZY);
if (lhandle) {
fprintf (stderr, "%s\n", dlerror());
exit(1);
}

Young W. Lim Link 8.A Dynamic Linking

2019-02-07 Thr

an example for an application’s dynamic linking (2)

addvec = dlsym(handle, "addvec");

if ((error = dlerror()) != NULL) {
fprintf (stderr, "Ys\n", error);
exit(1);

}

addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

if (dlclose(handle) < 0) {
fprintf ("stderr, "Ys\n", dlerror());
exit(1);

}

return O;

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 52 /54

summary

@ declaration
void *handle;
void (*addvec) (int*, int*, int*, int);
char *error;
@ loading a shared library
handle = dlopen("./libvector.so", RTLD_LAZY) ;

@ locating address of a fuction
addvec = dlsym(handle, "addvec") ;

@ unloading the shared library
dlclose(handle) ;

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr

compiler options

@ #include <dlfcn.h>
e -1d1

@ gcc -o p3 dlex.c -1d1

Young W. Lim Link 8.A Dynamic Linking 2019-02-07 Thr 54 /54

	Based on
	Dynamic linking with a shared library example
	example 1 : vector addition and multiplication
	example 2 : swap

	Shared Libraries
	Dynamic Linking
	Compiler options and paths for dynamic linking
	Loading and linking shared libraries from Applications

