
Link 7.A Static Linking

Young W. Lim

2019-01-22 Tue

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 1 / 33



Outline

1 Based on

2 Static Linking Examples

3 Linking with Static Libraries

4 Resolving refereces with Static Libraries

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 2 / 33



Based on

"Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding
"Computer Architecture: A Programmer’s Perspective",
Bryant & O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 3 / 33



Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 4 / 33



TOC: Static Linking Examples

1 addvec.c and mutvec.c
2 libvector.a
3 main.c
4 p

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 5 / 33



addvec.c and multvec.c !

/*::::: addvec.c :::::::::::::::::::::::::*/
void addvec(int *x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)
z[i] = x[i] + y[i];

}

/*::::: multvec.c :::::::::::::::::::::::::*/
void multvec(int *x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)
z[i] = x[i] * y[i];

}

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 6 / 33



libvector.a

gcc -c addvec.c
addvec.o

gcc -c multvec.c
multvec.o

ar rcs libvector.a addvec.o multvec.o
libvector.a

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 7 / 33



main.c

/*::::: vector.h ::::::::::::::::::::::::::*/
void addvec(int *x, int *y, int *z, int n);
void multvec(int *x, int *y, int *z, int n);

/*::::: main.c ::::::::::::::::::::::::::::*/
#include <stdio.h>
#include "vector.h"

int x[2] = { 1, 2};
int y[2] = { 3, 4};
int z[2];

int main() {

addvec(x, y, z, 2);
printf("z= [%d %d]\n", z[0], z[1]);

}

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 8 / 33



p

gcc -O2 -c main.c
main.o

gcc -static -o p main.o ./libvector.a
p

./p
z= [4 6]

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 9 / 33



TOC: Linking with Static Libraries

1 Static libraries
2 Object files
3 Static linking process
4 Static linker
5 Symbol resolution
6 Relocation
7 ANSI C libc.a
8 advantages of static libraries
9 Unix archive
10 Linking with static library examples

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 10 / 33



Static libraries

assumption

the linker reads a colleciton of relocatable object files
and links them together into an output file

in practice

a static library is just a packaging mechanism
that organizes related object modules into a single file
object files are supplied as inputs to the linker
the linker copies those object modules into a library
the application program references those object modules in the library

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 11 / 33



Object files - input to a static library

object files are merely collection of blocks of bytes

some blocks contain program code (.data)
others contain program data (.text)
others contain data structures
that guide the linker and the loader

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 12 / 33



Static linking process

static linker concatenates blocks together
decides on run-time locations for the concatenated blocks
modifies various locations within the code and data blocks
static linker has a minimal understanding of the target machine
the compiler and the assembler that generate object files
has already done most of the work

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 13 / 33



Static linker

the static linker ld takes as input

a collection of relocatable object files
command line arguments

geneartes as output

a fully linked executable object file
that can be loaded and run

performs two tasks

symbol resolution
relocation

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 14 / 33



Symbol resolution - static linker’s task

object files define and reference symbols
the purpose of symbol resolution is
to associate each symbol reference
with exactly one symbol definition

function calls and the function definition
global variable accesses and the global variable definition

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 15 / 33



Relocation - static linker’s task

compilers and assembler generates
code and data sections that start at address zero
the linker relocates these sections
by associating a memory location
with each symbol definition
modifying all of the references to those symbols
so that they point to this memory location

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 16 / 33



ANSI C libc.a

libc.a library
an extensive collection of standard I/O

atoi, pritnf, scanf
string manipulation

strcpy
integer math functions

random

libm.a library
an extensive collection of floating-point math functions

sin, cos, sqrt

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 17 / 33



advantages of static libraries (1)

related functions can be compiled
into separate object modules
then packaged in a single static library file
application program can then use
any of the functions defined in the library
by specifying the file name on the command line
gcc main.c /usr/lib/libc.a /usr/lib/libm.a

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 18 / 33



advantages of static libraries (2)

at link time, the linker will
only copy the object modules
that are referenced by the program
which reduces the size of the executable
on disk and in memory
the application programmers only need
to include the names of a few library files
C compiler drivers always pass libc.a to the linker
so the reference to libc.a is unnecessary

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 19 / 33



Unix archive

an archive on Unix systems

static libraries are stored on disk
in a particular file format : archive
a collection of concatenated relocatable object files
a header describes the size and locaton
of each member object file
archive filenames are denoted with the .a suffix

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 20 / 33



Linking with static library examples (1)

main2.c ⇒ main2.o
translators (cpp, ccl, as)

libvector.a → addvec.o

libc.a → printf.o
any other modules called by printf.o also

main2.o, addvec.o, printf.o, other object files ⇒ p2
linker (ld)

void addvec(int *x, int *y)

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 21 / 33



Linking with static library examples (2)

source files : main2.c, vector.h
static libraries : libvector.a, libc.a
relocatable object files : main2.o, addvec.o, printf.o,
any other modules called by printf.o

fully linked executable object file : p2

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 22 / 33



TOC: Resolving refereces with Static Libraries

1 Symbol resoltuion phase
2 for each input file f

3 for each member in the archive f

4 for undefined symbol set U is not empty
5 Link time error
6 Link time error example
7 Ordering libraries on the command line
8 Ordering libraries on the command line examples

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 23 / 33



Symbol resolution phase

during the symbol resolution phase, the linker scans
the relocatable object files and archives
left to right (⇒) in the same order
that they appear on the command line
the linker maintains

a set E of relocatable object files
that will be merged to form the executable
a set U of unresolved symbols
symbols referred to but not yet defined
a set D of symbols that have been defined
in the previous input files
initially, all the set E , U, D are empty

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 24 / 33



for each input file f

for each input file f on the command line,
the linker determines if f is an object file
or an archive
for input file f , the linker

adds f to E
updates U and D
to reflect the symbol definitions and references in f
and proceeds to the next input file

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 25 / 33



for each input archive f

the linker attempts to match
the unresolved symbols in U
against the symbols defined
by the members of the archive
any member object files which are
not contained in E are discarded
and the linker proceeds to the next input file

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 26 / 33



for each member in the archive f

if some archive member m defines a symbol
that resolves a reference in U
then m is added to E

then the linker updates U and D
to reflect the symbol definitions and references in m

this process iterates over
the member of object files in f
until a fixed point is reached
where U and D no longer change

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 27 / 33



for undefined symbol set U is not empty

if U is nonempty when the linker finishes
scanning the input files on the command line,
it prints an error and terminates
otherwise, it merges and relocates
the object files in E
to build the output executable file

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 28 / 33



Link time error

the ordering of libraries and object files
on the command line is significant
if the library that defines a symbol
appear on the command line
before the object file that references the symbol
then the reference will not be resolved
and the linking will fail

void addvec(int *x, int *y)

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 29 / 33



Linke time error example

when libvector.a is processed, U is empty
therefore, no member object files from libvector.a
is added to E

the reference to addvec is never resolved
error message
gcc -static ./libvector.a main2.c

in function ’main’ :
undefined reference to ’addvec’

gcc -static main2.c ./libvector.a

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 30 / 33



Ordering libraries on the command line

if the members of different libraries are independent
(no member references a symbol defined by other member)
then the libraries can be placed
at the end of the command line in arbitrary order
if they not independent, they must be ordered
so that for each symbol s that is referenced
externally by a member of an archive,
at least one definition of s
follows a reference to s

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 31 / 33



Ordering libraries on the command line example (1)

foo.c calls functions in libx.a and libz.a
which call functions in liby.a

libx.a and libz.a must precedes liby.a
on the command line
gcc foo.c libx.a libz.a liby.a

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 32 / 33



Ordering libraries on the command line example (2)

libraries can be repeated on the command line
if necessary to satisfy the dependence requirements
foo.c calls a function in libx.a
which calls a function in liby.a
which again calls a function in libx.a

then libx.a must be repeated on the command line
gcc foo.c libx.a liby.a libx.a

alternatively, libx.a and liby.a can be combined
into a single archive

Young W. Lim Link 7.A Static Linking 2019-01-22 Tue 33 / 33


	Based on
	Static Linking Examples
	Linking with Static Libraries
	Resolving refereces with Static Libraries

