
Young Won Lim
6/5/17

Libraries (1A)

Young Won Lim
6/5/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Library (1A) 3 Young Won Lim
6/5/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Library (1A) 4 Young Won Lim
6/5/17

Using Libraries

import Prelude hiding (lookup)
import Data.Map

employeeDept = fromList([("John","Sales"), ("Bob","IT")])
deptCountry = fromList([("IT","USA"), ("Sales","France")])
countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])

employeeCurrency :: String -> Maybe String
employeeCurrency name = do
 dept <- lookup name employeeDept
 country <- lookup dept deptCountry
 lookup country countryCurrency

main = do
 putStrLn $ "John's currency: " ++ (show (employeeCurrency "John"))
 putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))

https://downloads.haskell.org/~ghc/latest/docs/html/libraries/containers-0.5.7.1/Data-Map-Lazy.html

Library (1A) 5 Young Won Lim
6/5/17

fromList (1)

fromList :: Eq key => (key -> Int32) -> [(key, val)] -> IO (HashTable key val)
base Data.HashTable
Convert a list of key/value pairs into a hash table. Equality on keys is taken from the Eq instance
for the key type.

fromList :: [(Key, a)] -> IntMap a
containers Data.IntMap.Strict, containers Data.IntMap.Lazy
O(n*min(n,W)). Create a map from a list of key/value pairs.
> fromList [] == empty
> fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
> fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromList :: [Key] -> IntSet
containers Data.IntSet
O(n*min(n,W)). Create a set from a list of integers.

fromList :: [a] -> Seq a
containers Data.Sequence
O(n). Create a sequence from a finite list of elements. There is a function toList in the opposite
direction for all instances of the Foldable class, including Seq.

https://www.haskell.org/hoogle/?hoogle=fromList

Library (1A) 6 Young Won Lim
6/5/17

fromList (2)

fromList :: Ord a => [a] -> Set a
containers Data.Set
O(n*log n). Create a set from a list of elements. If the elemens are ordered, linear-time
implementation is used, with the performance equal to fromDistinctAscList.

fromList :: Ord k => [(k, a)] -> Map k a
containers Data.Map.Lazy, containers Data.Map.Strict
O(n*log n). Build a map from a list of key/value pairs. See also fromAscList. If the list contains
more than one value for the same key, the last value for the key is retained. If the keys of the list
are ordered, linear-time implementation is used, with the performance equal to
fromDistinctAscList.
> fromList [] == empty
> fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
> fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

https://www.haskell.org/hoogle/?hoogle=fromList

Library (1A) 7 Young Won Lim
6/5/17

lookup (1)

lookup :: Eq a => a -> [(a, b)] -> Maybe b
base Prelude, base Data.List
lookup key assocs looks up a key in an association list.

lookup :: HashTable key val -> key -> IO (Maybe val)
base Data.HashTable
Looks up the value of a key in the hash table.

lookup :: Key -> IntMap a -> Maybe a
containers Data.IntMap.Strict, containers Data.IntMap.Lazy
O(min(n,W)). Lookup the value at a key in the map. See also lookup.

lookup :: Ord k => k -> Map k a -> Maybe a
containers Data.Map.Lazy, containers Data.Map.Strict
O(log n). Lookup the value at a key in the map. The function will return the corresponding value
as (Just value), or Nothing if the key isn't in the map. An example of using lookup:

https://www.haskell.org/hoogle/?hoogle=fromList

Library (1A) 8 Young Won Lim
6/5/17

lookup (2)

> import Prelude hiding (lookup)
> import Data.Map
>
> employeeDept = fromList([("John", "Sales"), ("Bob", "IT")])
> deptCountry = fromList([("IT", "USA"), ("Sales", "France")])
> countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])
>
> employeeCurrency :: String -> Maybe String
> employeeCurrency name = do
> dept <- lookup name employeeDept
> country <- lookup dept deptCountry
> lookup country countryCurrency
>
> main = do
> putStrLn $ "John's currency: " ++ (show (employeeCurrency "John"))
> putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))

The output of this program:
> John's currency: Just "Euro"
> Pete's currency: Nothing

https://www.haskell.org/hoogle/?hoogle=fromList

Library (1A) 9 Young Won Lim
6/5/17

elem

elem :: Eq a => a -> [a] -> Bool
base Prelude, base Data.List

elem is the list membership predicate,
usually written in infix form, e.g., x `elem` xs.
For the result to be False, the list must be finite;
True, however, results from an element equal to x found
at a finite index of a finite or infinite list.

1 `elem` [1, 2, 4] -- True
2 `elem` [1, 2, 4] -- True
3 `elem` [1, 2, 4] -- False

https://www.haskell.org/hoogle/?hoogle=fromList

Young Won Lim
6/5/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

