Laurent Series and z-Transform - Geometric Series Double Pole Examples A

20181109 Fri

Copyright (c) 2016 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

2 formulas of $z \quad \{0.5, 2\} \rightarrow \{2, 0.5\}$ $(1) \quad \frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2}\right)$ 2-1 $2 \quad \frac{3}{2} \frac{-2^2}{(z-2)(z-0.5)} = \left(\frac{0.5z}{(z-0.5)} - \frac{2z}{(z-2)}\right)$

$$\begin{aligned}
\begin{aligned}
& \int \{(\xi) = \Im(\xi^{-1}) \\
& \Im(\xi) = \int (\xi^{-1}) \\
& \Im(\xi) = \int (\xi^{-1}) \\
\end{aligned}$$

$$\begin{aligned}
& \frac{3}{2} \frac{-1}{(\xi^{-}05)(\xi^{-}-2)} = \frac{3}{2} \frac{2}{3} \left(\frac{1}{\xi^{-}0.5} - \frac{1}{\xi^{-}2} \right) \\
& \frac{3}{2} \frac{-1}{(\xi^{-}05)(\xi^{-}-2)} = \frac{3}{2} \frac{2}{3} \left(\frac{1}{\xi^{-}0.5} - \frac{1}{\xi^{-}2} \right) \\
& = \left(\frac{1}{\xi^{-}0.5} - \frac{1}{\xi^{-}2} \right) \\
& = \left(\frac{2\xi}{2\xi^{-}1} - \frac{\delta \cdot S}{\delta\xi^{-}1} \right) \\
& = \left(\frac{2\xi}{2\xi^{-}0} - \frac{\delta \cdot S}{\delta\xi^{-}1} \right) \\
& = \left(\frac{2\xi}{2\xi^{-}0} - \frac{\delta \cdot S}{\delta\xi^{-}0} \right) \\
& = \left(\frac{-2\xi}{\xi^{-}2} + \frac{\delta \cdot S}{\xi^{-}0\cdot S} \right) \\
& = \xi \left(\frac{-2\xi}{\xi^{-}2} + \frac{\delta \cdot S}{\xi^{-}0\cdot S} \right) \\
& = \xi \left(\frac{-2\xi}{\xi^{-}2} + \frac{\delta \cdot S}{\xi^{-}0\cdot S} \right) \\
& = \xi \left(\frac{-2\xi}{\xi^{-}2} + \frac{\delta \cdot S}{\xi^{-}0\cdot S} \right) \\
& = \xi \left(\frac{-2\xi}{\xi^{-}2} - \frac{\xi^{-}}{\xi^{-}0\cdot S} \right) \\
& = \frac{3}{2} \frac{-\xi^{-}}{(\xi^{-}2)(\xi^{-}0\cdot S)} \\
& = \frac{3}{2} \frac{-\xi^{-}}{(\xi^{-}2)(\xi^{-}0\cdot S)} \\
& = \frac{3}{2} \frac{-\xi^{-}}{\xi^{-}2} - \frac{2\xi}{\xi^{-}2} \right)
\end{aligned}$$

	$f(z) = f_1(z) = f_2(z^4)$ $g(z) = g_1(z) = g_2(z^4)$
f(Z)	$+\frac{1}{z-0.5}-\frac{1}{z-2}$
f _i (そ)	$+ \frac{1}{\xi - 0.5} \cdot \frac{(1/0.5)}{(1/0.5)} - \frac{1}{\xi - 2} \cdot \frac{(1/2)}{(1/2)} - \frac{2}{1 - 2\xi} + \frac{0.5}{1 - 0.5\xi} \xi < 0.5$
f₂(₹')	$+ \frac{1}{\xi - 0.5} \cdot \frac{(1/\xi)}{(1/\xi)} - \frac{1}{\xi - 2} \cdot \frac{(1/\xi)}{(1/\xi)} + \frac{\xi^{-1}}{1 - 0.5\xi^{-1}} - \frac{\xi^{-1}}{1 - 2\xi^{-1}} \xi > 2$
g(z)	$-\frac{2z}{(z-2)}+\frac{0.5z}{(z-0.5)}$
g'(5)	$-\frac{2z}{(z-2)}\cdot\frac{(1/2)}{(1/2)}+\frac{0.5z}{(z-0.5)}\cdot\frac{(1/0.5)}{(1/0.5)}+\frac{z}{1-0.5z}-\frac{z}{1-2z}$
ସୁ(<mark>ୂ:'</mark>)	$-\frac{2\xi}{(\xi-2)}\cdot\frac{(1/\xi)}{(1/\xi)}+\frac{0.5\xi}{(\xi-0.5)}\cdot\frac{(1/\xi)}{(1/\xi)}-\frac{2}{1-2\xi^{-1}}+\frac{0.5}{1-0.5\xi^{-1}} \xi >2$

$f(z) = f_1(z) = f_2(z^{-1})$

3 representations	f(z),	f.(z),	f₁(モ╹)	
all equal formulas		f.(z) =		
with complimentary Roc		E < Q	12170	
1 0				

९ (२) = ९, (२) = ९ - (२)

3 representations	g(z), Z,(z),	g1(2 <mark>-1</mark>)
all equal formulas	$g(z) = g_1(z)$	= 9.(27)
with complimentary ROC's	181<9	12170

i Nverse	relationship	$f(z) = g(z^{-1})$
		$\Im(z) = f(z^{-1})$

$$f(t) = \begin{cases} f_{1}(t) \\ f_{1}(t') \\ f_{1}(t') \\ f_{2}(t') \\ f_{3}(t') \\ f_{4}(t') \\ f_{4}(t'$$

(

$$-\frac{2}{|-2\xi|} + \frac{\delta s}{|-\delta s\xi|} |\xi| < 0.s \qquad (1) \qquad -\frac{2}{|-2\xi|^{2}} + \frac{\delta s}{|-\delta s\xi|} |z| > 2 \qquad (2)$$

$$-\frac{2^{n_{1}} + (\frac{1}{2})^{n_{1}}}{|-\delta s\xi|^{2}} - \frac{\xi^{-1}}{|-2\xi|} |z| > 2 \qquad (2) \qquad + 2^{n_{1}} - (\frac{1}{2})^{n_{1}} (n < 1)$$

$$+ \frac{\xi^{-1}}{|-\delta s\xi|^{2}} - \frac{\xi^{-1}}{|-2\xi|} |z| > 2 \qquad (2) \qquad + \frac{\xi}{|-\delta s\xi|} - \frac{\xi}{|-2\xi|} |z| < 0.s \qquad (3)$$

$$-(\frac{1}{2})^{n_{1}} + 2^{n_{1}} (n < b) \qquad + (\frac{1}{2})^{n_{1}} - 2^{n_{1}} (n > b)$$

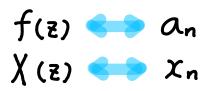
$$= -\frac{1}{|-2\xi|} + \frac{1}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} (n > b)$$

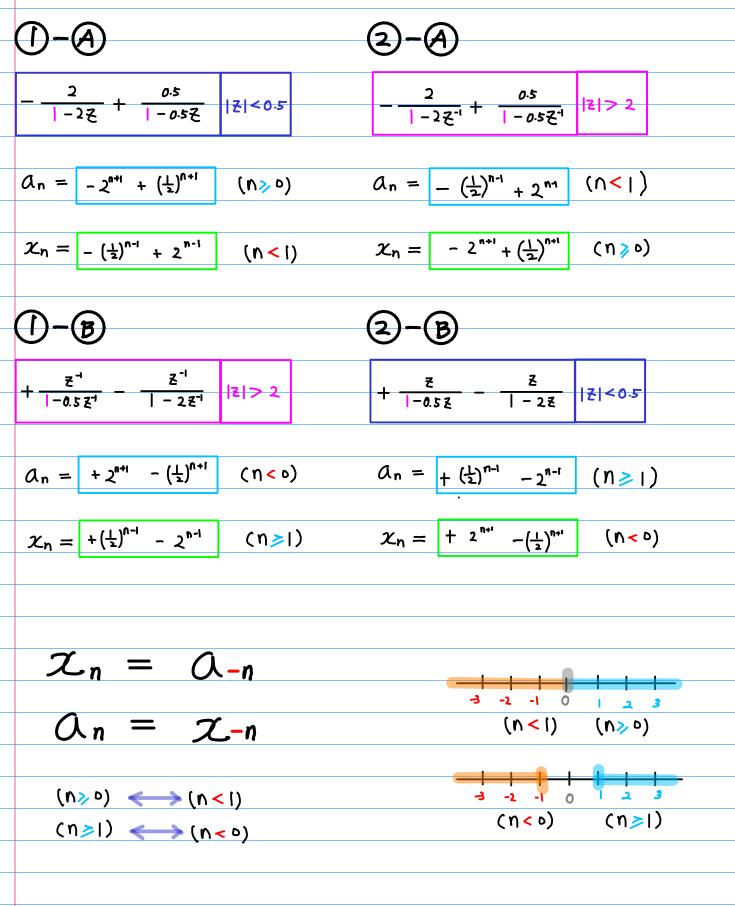
$$= -\frac{2}{|-2\xi|} + \frac{\delta c}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} (n > b)$$

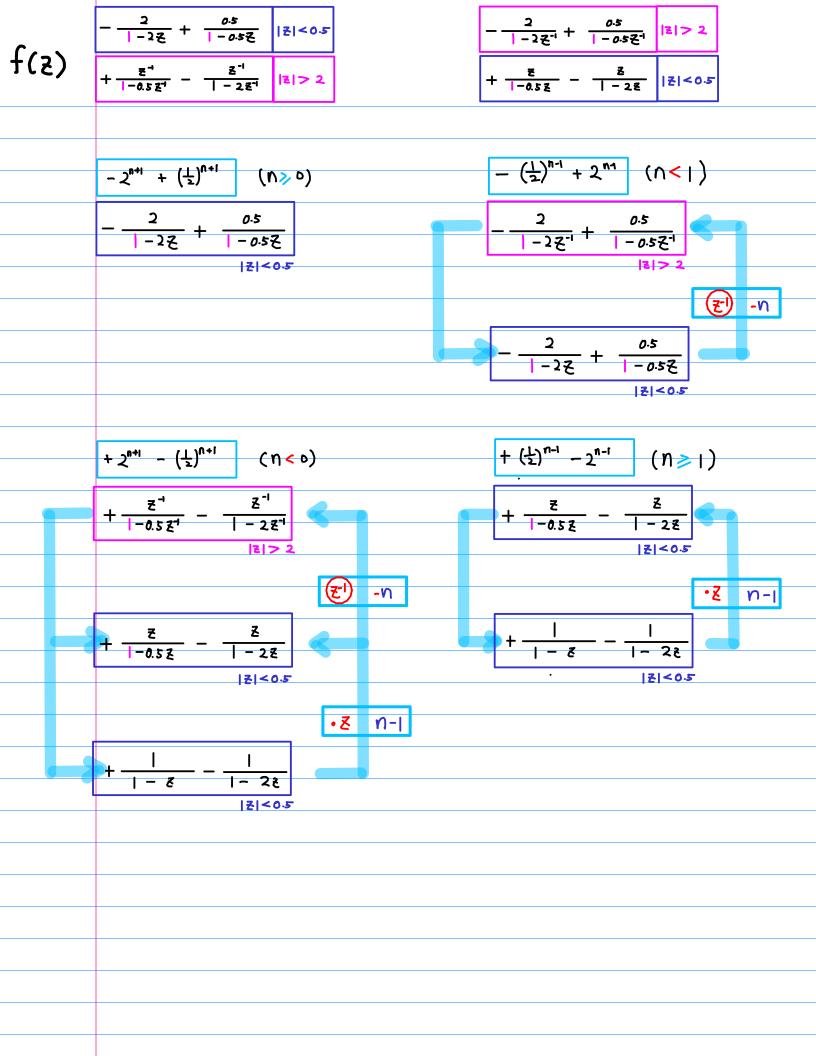
$$= -\frac{2}{|-2\xi|} + \frac{\delta c}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} (n > b)$$

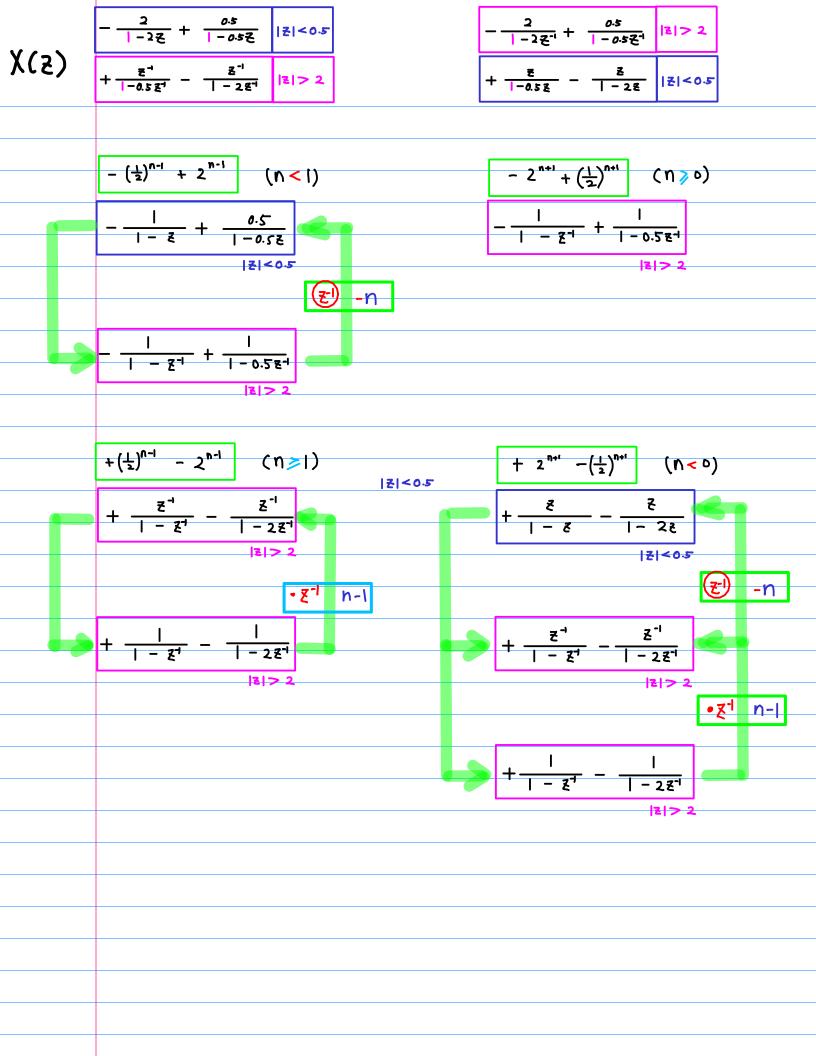
$$= -\frac{1}{|-2\xi|} + \frac{\delta c}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} (n > b)$$

$$= -\frac{1}{|-2\xi|} + \frac{\delta c}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} = -(\frac{1}{2})^{n_{1}} + 2^{n_{1}} (n < b)$$

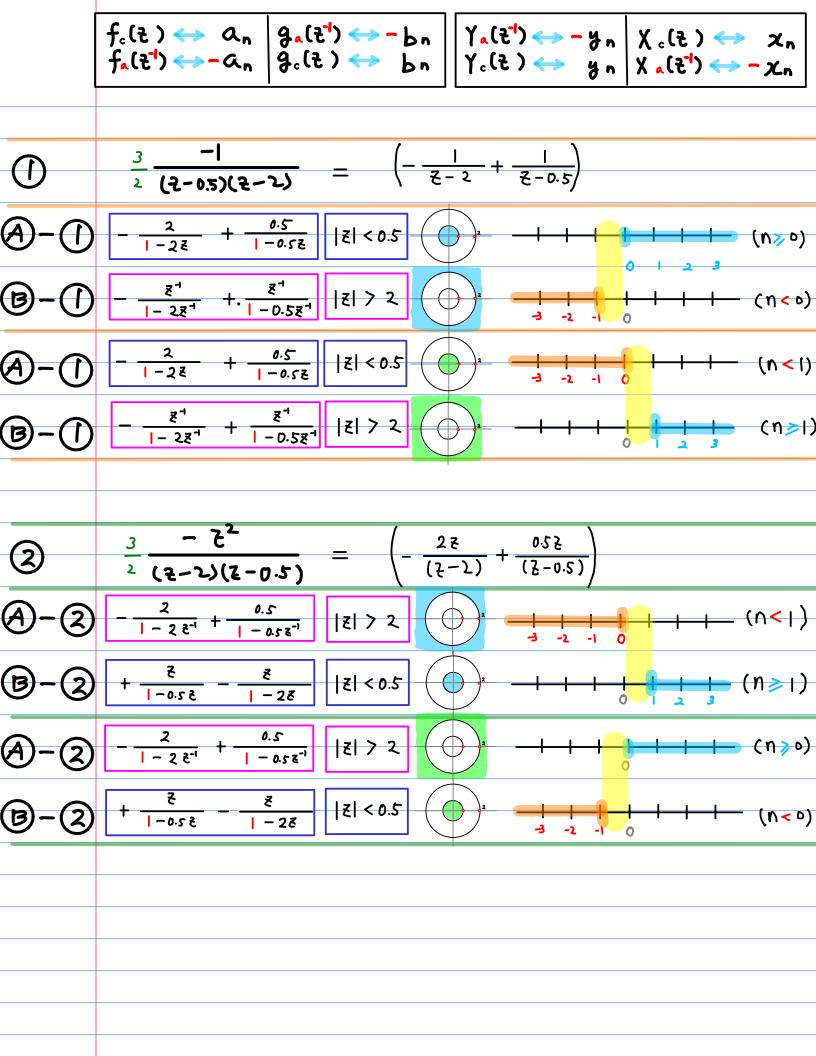

$$= -\frac{1}{|-2\xi|} + \frac{1}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} = -(\frac{1}{2})^{n_{1}} + 2^{n_{1}} (n < b)$$

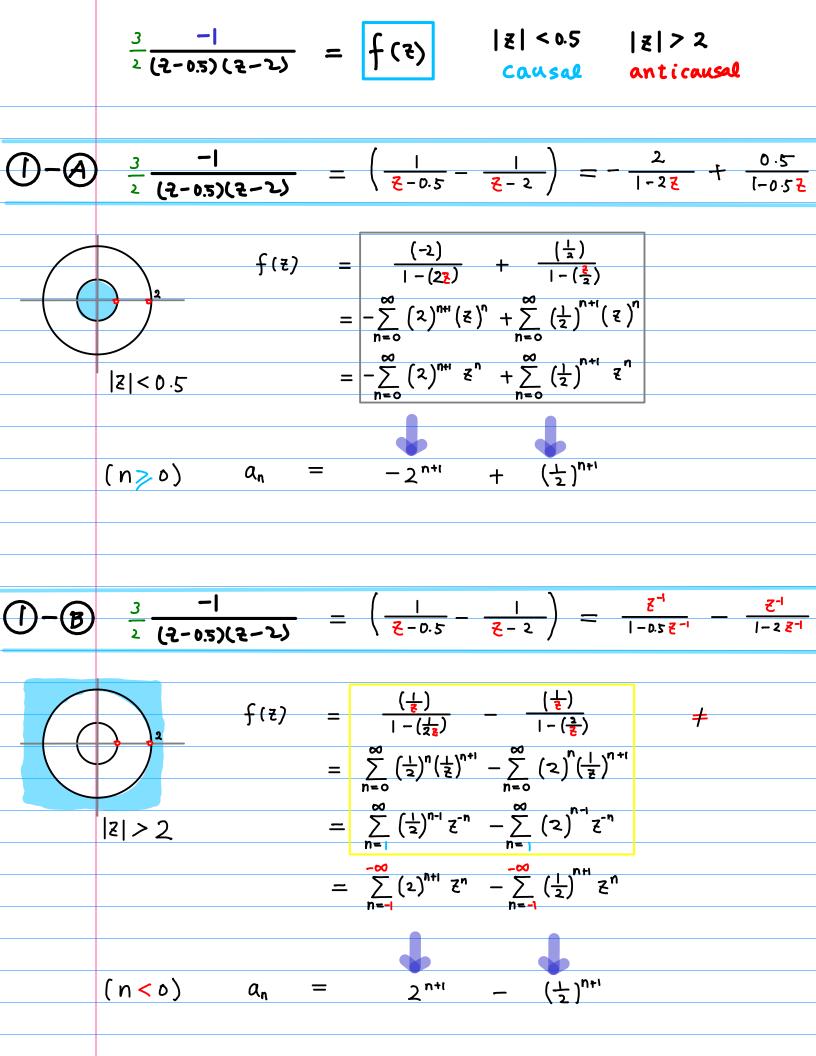

$$= -\frac{1}{|-2\xi|} + \frac{1}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} = -(\frac{1}{2})^{n_{1}} + 2^{n_{1}} (n < b)$$


$$= -\frac{\xi^{n}}{|-2\xi|} + \frac{\xi}{|-\delta s\xi|} |\xi| < 0.s \qquad -2^{n_{1}} + (\frac{1}{2})^{n_{1}} = -(\frac{1}{2})^{n_{1}} + 2^{n_{1}} (n < b)$$


X (Z) 👐 Xn

$$\begin{aligned} -\frac{2}{1-2\xi} + \frac{\delta s}{1-\delta \xi} |z| < 0.5 \quad (3) \quad -\frac{2}{1-2\xi^{-1}} + \frac{\delta s}{1-\delta \xi^{-1}} |z| > 2 \quad (1) \\ -\frac{2}{1-2\xi^{-1}} + \frac{\delta s}{1-\delta \xi^{-1}} |z| > 2 \quad (1) \\ -\frac{2}{1-2\xi^{-1}} + \frac{\delta s}{1-\delta \xi^{-1}} |z| > 2 \quad (2) \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} |z| < 0.5 \quad (2) \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} |z| < 0.5 \quad (2) \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} |z| < 0.5 \quad (2) \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} |z| < 0.5 \quad (2) \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} |z| < 0.5 \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} - \frac{z}{1-2\xi} |z| < 0.5 \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} - \frac{z}{1-2\xi} |z| < 0.5 \\ +\frac{z}{1-\delta \xi} - \frac{z}{1-2\xi} - \frac{z}{1-2\xi} + \frac{z}{1-2\xi} - \frac{z}{1-2\xi} -$$





	$ \begin{array}{c} f_{c}(t) \leftrightarrow a_{n} g_{a}(t^{-1}) \leftrightarrow -b_{n} \\ Y_{a}(t^{-1}) \leftrightarrow -y_{n} \chi_{c}(t) \leftrightarrow \chi_{n} \end{array} \end{array} \begin{array}{c} f_{a}(t^{-1}) \leftrightarrow -a_{n} g_{c}(t) \leftrightarrow b_{n} \\ Y_{c}(t^{-1}) \leftrightarrow -y_{n} \chi_{c}(t^{-1}) \leftrightarrow \chi_{n} \end{array} $
A	$(1) - \frac{2}{1-2\xi} + \frac{0.5}{1-0.5\xi} \qquad (2) - \frac{2}{1-2\xi^{-1}} + \frac{0.5}{1-0.5\xi^{-1}}$
A -()	$f(z) = -\frac{2}{1-2z} + \frac{0.5}{1-0.5z} z < 0.5 - 2^{n+1} + (\frac{1}{2})^{n+1} (n \gg 0)$
A-2	$\frac{2}{1-2z^{-1}} + \frac{0.5}{1-0.5z^{-1}} z > 2 \qquad -(\frac{1}{2})^{n-1} + 2^{n-1} (n < 1)$
A-(1)	$Y(z) = -\frac{2}{1-2z} + \frac{0.5}{1-0.5z} z < 0.5 - (\frac{1}{2})^{n-1} + 2^{n-1} (n < 1)$
A-2	$X(z) = -\frac{2}{1-2z^{-1}} + \frac{0.5}{1-0.5z^{-1}} z > 2 \qquad -2^{n+1} + (\frac{1}{2})^{n+1} (n \ge 0)$
B	$(1) + \frac{z^{-1}}{1 - 0.5 z^{-1}} - \frac{z^{-1}}{1 - 2 z^{-1}} \qquad (2) + \frac{z}{1 - 0.5 z} - \frac{z}{1 - 2z}$
B-()	$f(z) = + \frac{z^{-1}}{1 - asz^{-1}} - \frac{z^{-1}}{1 - 2z^{-1}} z > 2 + 2^{n+1} - (\frac{1}{2})^{n+1} (n < 0)$
B-2	$\frac{2}{3(2)} = \frac{\frac{2}{1-0.5}}{\frac{1}{1-25}} z < 0.5 + (\frac{1}{2})^{n-1} - 2^{n-1} (n \ge 1)$
B-()	$Y(z) = + \frac{z^{-1}}{1 - 0.5 z^{-1}} - \frac{z^{-1}}{1 - 2 z^{-1}} z > 2 + (\frac{1}{2})^{n-1} - 2^{n-1} (n > 1)$
B -2	$\chi_{(\xi)} = + \frac{\xi}{1 - 0.5 \xi} - \frac{\xi}{1 - 2\xi} \xi < 0.5 + 2^{n+1} - (\frac{1}{2})^{n+1} (n < 0)$

		$\frac{f_{c}(t) \leftrightarrow a_{n} g_{a}(t) \leftrightarrow b_{n}}{\Upsilon_{a}(t) \leftrightarrow -\Upsilon_{n} \chi_{c}(t) \leftrightarrow \chi_{n}} \qquad $
Æ		$ \underbrace{1}_{1-2\xi} - \frac{2}{1-2\xi} + \frac{0.5}{1-0.5\xi} \qquad \underbrace{2}_{1-2\xi^{-1}} + \frac{0.5}{1-0.5\xi^{-1}} $
A -	\bigcirc	$-\frac{2}{1-2\xi} + \frac{0.5}{1-0.5\xi} \xi < 0.5$
A -	2	$-\frac{2}{1-2z^{-1}}+\frac{0.5}{1-0.5z^{-1}} z >2$
A -	\bigcirc	$-\frac{2}{1-2\xi} + \frac{0.5}{1-0.5\xi} \xi < 0.5$
A -	2	$-\frac{2}{1-2\xi^{-1}} + \frac{0.5}{1-0.5\xi^{-1}} \xi > 2$
B		$(1) + \frac{z^{-1}}{1 - 0.5 z^{-1}} - \frac{z^{-1}}{1 - 2 z^{-1}} \qquad (2) + \frac{z}{1 - 0.5 z^{-1}} - \frac{z}{1 - 2z}$
B -		$+\frac{z^{-1}}{1-2z^{-1}} - \frac{z^{-1}}{1-2z^{-1}} z > 2$
B	2	$+\frac{\xi}{1-0.5\xi}-\frac{\xi}{1-2\xi} \xi <0.5 \qquad +++++++++++++++++++++++++++++++++++$
B -		$+ \frac{z^{-1}}{1 - a_{5}z^{-1}} - \frac{z^{-1}}{1 - 2z^{-1}} z > 2 \qquad \qquad$
B -	2	$+\frac{z}{1-0.5z}-\frac{z}{1-2z} z <0.5$

$$\begin{aligned}
\begin{bmatrix}
f_{1}(\frac{1}{2}) &\leftrightarrow & \Delta_{n} \\
f_{1}(\frac{1}{2}') &\leftarrow & \Delta_{n}
\end{bmatrix} & \frac{g_{n}(\frac{1}{2}') &\leftarrow & -b_{n}}{b_{n}} & \frac{\gamma_{n}(\frac{1}{2}') &\leftarrow & g_{n}}{\gamma_{n}(\frac{1}{2}) &\leftarrow & g_{n}} & \frac{\chi_{n}(\frac{1}{2}') &\leftarrow & \chi_{n}}{\chi_{n}(\frac{1}{2}') &\leftarrow & -\chi_{n}} \\
\end{bmatrix}
\\
\begin{pmatrix}
\hline
& 3 \\ & 2 \\ \hline
& 2 \\$$

$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \chi(2)$$

| Z | < 0.5 | Z | 7 2 anticausal Causal

$$\frac{3}{2} \frac{-2^2}{(2-2)(2-0.5)} = f(2)$$

| ミ | フ 2 | ミ | < 0.5

anticausal Causal

$$(n \leq 0) \qquad (n \geq 0) \qquad (n \leq 0) \qquad (n \geq 0) \qquad (n \leq 0) \qquad (n \geq 0) \qquad (n = -\frac{2}{1-2z^{-1}} + \frac{2z}{1-0.5z^{-1}} - \frac{2z}{1-2z^{-1}} + \frac{2z}{1-0.5z^{-1}} + \frac{2z}{1-$$

$$\frac{3}{2} \frac{-z^{2}}{(z-z)(z-v,z)} = \left[\begin{array}{c} \chi(z) \\ \zeta(z) \\$$