Induction Haskell Exercises

Young W. Lim

2018-10-13 Sat

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 1/18

Outline

@ Based on

© Induction and Recursion
@ Using REL.hs
@ Various Sums of Integers
@ Recursion over Integer Numbers

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 2/18

Based on

"The Haskell Road to Logic, Maths, and Programming",
K. Doets and J. V. Eijck

1, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Induction Haskell Exercises 2018-10-13 Sat 3/18

Using IAR.hs

:load REL

- changes made
add :: [Natural] -> Natural
add = foldr plus Z

module IAR

where
mlt :: [Natural] -> Natural

import List mlt = foldr mult (S Z)

import STA: (display) rev i: [a] -> [a]

rev = foldl (\ xs x -> x:xs) []

rev’ :: [a] -> [a]
rev’ = foldr (\ x xs -> xs ++ [x]) []

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 4/18

Sum of Odd Integers

o Y7 2k—1=n(n+1)—n=n?

@ sum0dds’ :: Integer -> Integer
sumOdds’ n = sum [2%k - 1 | k <- [1..n]]

sumOdds :: Integer -> Integer
sumOdds n = n~2

*Main> [2xk-1 | k <-[1..10]]
[1,3,5,7,9,11,13,15,17,19]
*Main> [2xk | k <-[1..10]]
[2,4,6,8,10,12,14,16,18,20]
*Main> sumOdds’ 10

100

*Main> sumOdds 10

100

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 5/18

Sum of Even Integers

o Y i 2k=n(n+1)=n*+n

@ sumEvens’ :: Integer -> Integer
sumEvens’ n = sum [2%k | k <- [1..n]]

sumEvens :: Integer -> Integer
sumEvens n = n * (n+1)

*Main> [2*k | k <-[1..10]]
[2,4,6,8,10,12,14,16,18,20]
*Main> sumEvens’ 10

110

*Main> sumEvens 10

110

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 6/18

Sum of Integers

© >iork=73n(n+1)

@ sumInts’ :: Integer -> Integer
sumInts’ n = sum [1..n]

sumInts :: Integer -> Integer
sumInts n = n * (n+1) / 2

*Main> [1..10]
[1,2,3,4,5,6,7,8,9,10]
*Main> sumInts’ 10

55

*Main> sumInts 10

55

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 7/18

Sum of Squares

® Y i k=¢n(n+1)(2n+1)

@ sumSquares’ :: Integer -> Integer
sumSquares’ n = sum [k"2 | k <- [1..n]]
sumSquares :: Integer -> Integer

sumSquares n = (n*(n+1)*(2*n+1)) ‘div‘ 6

*Main> [k~2 | k <- [1..10]]
[1,4,9,16,25,36,49,64,81,100]
*Main> sumSquares’ 10

385

*Main> sumSquares 10

385

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 8/18

Sum of Cubes

o Y0 k={in(n+1)}?

@ sumCubes’ :: Integer -> Integer
sumCubes’ n = sum [k"3 | k <- [1..n]]

sumCubes :: Integer -> Integer
sumCubes n = (n*(n+1) ‘div¢ 2)°2

*Main> [k~3 | k <- [1..10]]
[1,8,27,64,125,216,343,512,729,1000]
*Main> sumCubes’ 10

3025

*Main> sumCubes 10

3025

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 9/18

sum recursive implementations

@ Recursion
sum :: [Integer] -> Integer
sum [] =0

sum (x:Xs) = x + sum Xs

https://en.wikibooks.org/wiki/Haskell/Lists_III

2018-10-13 Sat 10/18

Induction Haskell Exercises

Young W. Lim

sum iterative implementations

@ lIteration
import Control.Monad.Trans.State

accumulate :: Int -> State Int Int
accumulate i = do n <- get

put (n+i)

return n

execState (mapM accumulate [1..10]) O

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 11/18

@ foldr :: (a->b ->b) ->b ->[a] ->b
foldr f acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)

@ foldr f acc (a:b:c:[]) = f a (f b (f c acc))

https://en.wikibooks.org/wiki/Haskell/Lists_III

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 12 /18

@ foldl :: (a ->b ->a) ->a -> [b] -> a
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs

@ foldl f acc (a:b:c:[]) = f (£ (f acc a) b) ¢

https://en.wikibooks.org/wiki/Haskell/Lists_III

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 13 /18

foldr and foldl

@ foldl (-) 6 [3, 2, 1] == ((6 - 3) - 2) - 1 -- True
foldr (-) 6 [1, 2, 3] ==1 - (2 - (3 - 6)) -- True

@ GHCi> foldl (-) 6 [3, 2, 1] ==6 -3 - 2 - 1
True
GHCi> foldr (-) 6 [1, 2, 3] ==6 -3 - 2 - 1
False

https://en.wikibooks.org/wiki/Haskell/Lists_III

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 14 /18

Recursive defintion of Integer Numbers

@ data Natural = Z | S Natural deriving (Eq, Show)

o using successor S
*Main> al = S(Z)
*Main> a2 = S(al)
*Main> a3 = S(a2)
*Main> a4 = S(a3)

*Main> al 1
S Z

*Main> a2 2
S (8 2)

*Main> a3 3
S (8 (8 2))
*Main> a4 4

S (8 (5 (52)))

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 15 /18

Recursive defintion of +

em+0:=m
em+(n+1):=(m+n)+1

@ plusmZ=m
plus m (S n) = S (plus m n)

m ‘plus® Z = m
m ‘plus® (S n) =S (m ‘plus‘ n)

@ plus 2 Z = 2
plus 2 (S8 3) =S (plus 2 3) =6
plus S (82) (S (S (8 (S2)))) =8 (S (s (5 (552NN

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 16 /18

Recursive defintion of *

em-0:=0
em-(n+1):=(m-n)+m

Q@ mltmZ-=72
mult m (S n) = plus (mult m n) m

m ‘mult¢ Z = Z
m ‘mult® (S n) = (m ‘mult® n) ‘plus® m

@ mult 2 (S 3) = plus (mult 2 3

2
mult S (S Z) (S (S (S (8 2)))) =

)y 2 =
) S S (S (8 (S (8 (S (82NN

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 17 /18

Recursive defintion of exponent

@ expnm Z = (S 2)
expn m (S n) = mult (expn m n) m

m ‘expn‘ Z = (S Z)
m ‘expn® (S n) = (m ‘expn‘ n) ‘mult® m

@ expn 2 (S 2) = mult (expn 2 2) 2 = 8
expn S (S2) (S (S(82))) =5 (6 GG G2DNN)N

Young W. Lim Induction Haskell Exercises 2018-10-13 Sat 18 /18

	Based on
	Induction and Recursion
	Using REL.hs
	Various Sums of Integers
	Recursion over Integer Numbers

