
Young Won Lim
10/11/16

Haskell Overview III (3A)

Young Won Lim
10/11/16

 Copyright (c) 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Haskell Overview III 3 Young Won Lim
10/11/16

Based on

Haskell Tutorial, Medak & Navratil
ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

Yet Another Haskell Tutorial, Daume
https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

Haskell Overview III 4 Young Won Lim
10/11/16

Type Inference

 Prelude> 7 :: Int

 7

 Prelude> 7 :: Double

 7.0

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

usually don't have to declare types

(type inference)

to declare types, use :: to do it.

Haskell Overview III 5 Young Won Lim
10/11/16

Type Information Display

 Prelude> :t False

 False :: Bool

 Prelude> :t 'A'

 'A' :: Char

 Prelude> :t "Hello, world"

 "Hello, world" :: [Char]

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

:t Print type information

Haskell Overview III 6 Young Won Lim
10/11/16

Type Classes

 Prelude> :t 42

 42 :: (Num t) => t

 Prelude> :t 42.0

 42.0 :: (Fractional t) => t

 Prelude> :t gcd 15 20

 gcd 15 20 :: (Integral t) => t

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

42 can be used as any numeric type

42.0 can be any fractional type

Gcd 15 20 can be any integral type

Haskell Overview III 7 Young Won Lim
10/11/16

Type Classe Constraint

 Prelude> :t 42

 42 :: (Num t) => t

 Prelude> :t 42.0

 42.0 :: (Fractional t) => t

 Prelude> :t gcd 15 20

 gcd 15 20 :: (Integral t) => t

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

the types of t must be Num type class
the types of t must be Fractional type class
the types of t must be Integral type class

class constraint

type t belongs to Num type class

type t belongs to Fractional type class

type t belongs to Integral type class

(Num t) =>
(Fractional t) =>
(Integral t) =>

the type t is constrained by the context
(Num t), (Fractional t), (Integral t)

Haskell Overview III 8 Young Won Lim
10/11/16

Instances

 Int an integer with at least 30 bits of precision.

 Integer an integer with unlimited precision.

 Float a single precision floating point number.

 Double a double precision floating point number.

 Rational a fraction type, with no rounding error.

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Instances of Num type class

Instances of Integral type class

Instances of Float type class

Instances are used as types

Haskell Overview III 9 Young Won Lim
10/11/16

Type Class

a type class definition:

specifying
 a set of
 functions or constants,
 together with their respective types,

 that must be implemented
 for every type that should belong to the type class

https://en.wikipedia.org/wiki/Type_class

Like the Interface in Java

Haskell Overview III 10 Young Won Lim
10/11/16

Type Class Definition

the type class Eq is intended to include those types
that implement equality (==), (/=) functions

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

a type a belongs to the type class Eq
if (==) and (/=) functions are defined

https://en.wikipedia.org/wiki/Type_class

a type a has an instance of the class Eq
if there is an (overloaded) operation ==
and /= defined.

Haskell Overview III 11 Young Won Lim
10/11/16

Instance of a Class

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

https://en.wikipedia.org/wiki/Type_class

type class Eq

parameterized type a

a type a can be an instance of the class Eq
if there is an (overloaded) operation ==
and /= defined.

The type Integer is an instance of the class Eq,
whose method == and /= are defined

The type Float is an instance of the class Eq,
whose method == and /= are defined

Haskell Overview III 12 Young Won Lim
10/11/16

Instance Declaration

instance Eq Integer where

 x == y = x `integerEq` y

instance Eq Float where

 x == y = x `floatEq` y

https://en.wikipedia.org/wiki/Type_class

class Eq a where
 (==) :: a -> a -> Bool Eq a

type class type

Eq Integer
Eq Float

type class instance

Haskell Overview III 13 Young Won Lim
10/11/16

Default Method

class Eq a where
 (==), (/=) :: a -> a -> Bool
 x /= y = not (x == y)

https://en.wikipedia.org/wiki/Type_class

If a method is not defined
in an instance declaration,
then the default implementation
defined in the class declaration,
if it exists, is used instead.

overloaded method definition

The default definition can be
overloaded in an instance
declaration

Haskell Overview III 14 Young Won Lim
10/11/16

Class Constraint

https://en.wikipedia.org/wiki/Type_class

elem :: a -> [a] -> Bool the function elem has
the type a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool the type a is constrained
by the context (Eq a)

the types of a must belong
to the Eq type class

 => : called as a 'class constraint'

Haskell Overview III 15 Young Won Lim
10/11/16

Class Constraint Example

elem function definition
elem function determines whether an element is in a list

elem :: (Eq a) => a -> [a] -> Bool
elem y [] = False
elem y (x:xs) = (x == y) || elem y xs

https://en.wikipedia.org/wiki/Type_class

Haskell Overview III 16 Young Won Lim
10/11/16

Enumerated Data Types

data Bool = True | False

data Color = Red | Green | Blue

https://www.haskell.org/tutorial/goodies.html

Type Constructor Data Constructor
The type being defined here
is Bool, and it has exactly
two values: True and False.

True :: Bool
False:: Bool

var1 :: Bool
var1 = True

var2 :: Bool
var2 = False

Red :: Color
Green :: Color
Blue :: Color

var3 :: Color
var3 = Red

var4 :: Color
var4 = Green

var5 :: Color
var5 = Blue

Haskell Overview III 17 Young Won Lim
10/11/16

Type Names and Constructor Functions

data Bool = True | False

https://www.haskell.org/tutorial/goodies.html

Type Constructor

Type name : Bool
The name of new data type

Usually it appears in the linea
concerning type information
(::)

Data Constructor

Constructor function
: True, False

Usually it appears in the lines
concerning application (=)

A nullary constructor:
takes no arguments

A multi-constructor

Haskell Overview III 18 Young Won Lim
10/11/16

Data Constructor

Data constructors group values together and tag alternatives

Deconstructing data constructors

● What a data constructor does is holding values together

● Have to separate them in order to use them.

● pattern matching ()

Data constructors are not types but values

https://wiki.haskell.org/Constructor

Haskell Overview III 19 Young Won Lim
10/11/16

Parameterized Data Type Definition

data Point a = Pt a a

https://www.haskell.org/tutorial/goodies.html

A single constructorA unary constructor
(one argument a)

Pt :: a -> a -> Point a

Pt 2.0 3.0 :: Point Float
Pt 'a' 'b' :: Point Char
Pt True False :: Point Bool

Type Constructor Data Constructor

v1 :: Point Float
v1 = Pt 2.0 3.0

v2 :: Point Char
v2 = Pt ‘a’ ‘b’

v3 :: Point Bool
v3 = Pt True False

 Data constructors group values together
 and tag alternatives

https://wiki.haskell.org/GADTs_for_dummies

Haskell Overview III 20 Young Won Lim
10/11/16

Polynom Data Type (1)

roots :: (Float, Float, Float) -> (Float, Float)
roots (a,b,c) = if d < 0 then error "sorry" else (x1, x2)

where x1 = e + sqrt d / (2 * a)
x2 = e - sqrt d / (2 * a)
d = b * b - 4 * a * c
e = - b / (2 * a)

real :: (Float, Float, Float) -> Bool
real (a,b,c) = (b*b - 4*a*c) >= 0

p1 = (1.0,2.0,1.0) :: (Float, Float, Float)
p2 = (1.0,1.0,1.0) :: (Float, Float, Float)
ps = [p1,p2]
newPs = filter real ps
rootsOfPs = map roots newPs

Haskell Overview III 21 Young Won Lim
10/11/16

Polynom Data Type (2)

data Polynom = Poly Float Float Float

data the keyword

Polynom the name of the data type

Poly the constructor function (:t Poly)

Float the three arguments to the Poly constructor

Poly :: Float -> Float -> Float -> Polynom

Haskell Overview III 22 Young Won Lim
10/11/16

Polynom Data Type (3)

data Polynom = Poly Float Float Float

roots’ :: Float Float Float -> (Float, Float)

roots’ a b c = … function definition …

roots2 :: Polynom -> (Float, Float)

roots2 (Poly a b c) = … function definition …

p1, p2 :: Polynom

p1 = Poly 1.0, 2.0, 3.0

p2 = Poly 1.0, 3.0, (-5.0)

(Poly a b c) pattern matching

(Float, Float) tuple

Haskell Overview III 23 Young Won Lim
10/11/16

Recursive Definition of Lists

data [a] = [] | a : [a]

List = [] | (a : List)

https://www.haskell.org/tutorial/goodies.html

an empty
list

a list with at least
one element

[] (x:xs)

Any type is ok but
The type of every element in
the list must be the same

Haskell Overview III 24 Young Won Lim
10/11/16

List Type Definition : Parameterized & Recursive

data List a = L a (List a) | Empty

data List a = L a (List a) | Empty

Parameter

Recursive Definition

Bool
Int
Integer
Float
Double
Char
String

Haskell Overview III 25 Young Won Lim
10/11/16

List Type Definition : Constructors

data List a = L a (List a) | Empty

Head : Tail :
element list

Data Constructor with two parameters

L :: a -> List a -> List a

Type Constructor

L a (List a)

Empty

Data Constructors

Haskell Overview III 26 Young Won Lim
10/11/16

List Type Definition : Examples

data List a = L a (List a) | Empty

L1, L2, L3 :: List Integer

L1 = Empty

L2 = L 1 L1

L3 = L 5 L2

L4 = L 1.5 Empty :: List Double

data constructor
L a (List a)

type constructor List

type constructor List

Haskell Overview III 27 Young Won Lim
10/11/16

Tree Data Type : Recursive Definition

https://www.haskell.org/tutorial/goodies.html

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Recursive Definition

(Tree a) pattern matching

Haskell Overview III 28 Young Won Lim
10/11/16

Tree Data Type : Constructors

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Type Constructor : Tree a

Data Constructor 1: Leaf a

Leaf :: a -> Tree a

Data Constructor 2: Branch (Tree a) (Tree a)

Branch :: Tree a -> Tree a -> Tree a

Branch :: (Tree a) -> (Tree a) -> Tree a

https://www.haskell.org/tutorial/goodies.html

Haskell Overview III 29 Young Won Lim
10/11/16

Tree Data Type : Constructors

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) = fringe left ++ fringe right

https://www.haskell.org/tutorial/goodies.html

Haskell Overview III 30 Young Won Lim
10/11/16

Recursive Data Type Example (1)

data Bus = Start | Next (Bus) deriving Show

myBusA = Start

myBusB = Next (Next (Next (Start)))

myBusC = Next myBusB

plus :: Bus -> Bus -> Bus

plus a Start = a

plus a (Next b) = Next (plus a b)

testBus :: Bus

testBus = plus myBusC myBusB

(Next b)
parenthesis for
pattern matching

Haskell Overview III 31 Young Won Lim
10/11/16

Recursive Data Type Example (2)

data Bus = Start | Next (Bus) deriving Show
myBusA = Start
myBusB = Next (Next (Next (Start)))
myBusC = Next myBusB

 = Next (Next (Next (Next (Start))))

plus myBusC myBusB
plus Next (Next (Next (Start))) Next (Next (Next (Next (Start))))

Next (plus Next (Next (Next (Start))) Next (Next (Next (Start))))

Next (Next (plus Next (Next (Next (Start))) Next (Next (Start))))

Next (Next (Next (plus Next (Next (Next (Start))) Next (Start))))

Next (Next (Next (Next (plus Next (Next (Next (Start))) Start))))

Next (Next (Next (Next (Next (Next (Next (Start)))))))

 plus :: Bus -> Bus -> Bus
 plus a Start = a
 plus a (Next b) = Next (plus a b)

Haskell Overview III 32 Young Won Lim
10/11/16

Recursive Data Type Example (3)

howFar :: Bus -> Int

howFar Start = 0

howFar (Next r) = 1 + howFar r

testInt :: Int

testInt = (+) (howFar myBusC) (howFar myBusB)

Haskell Overview III 33 Young Won Lim
10/11/16

Recursive Data Type Example (4)

testInt = (+) (howFar myBusC) (howFar myBusB)

howFar myBusC

howFar Next (Next (Next (Start)))

1 + howFar Next (Next (Start))

2 + howFar Next (Start)

3 + howFar Start

3

howFar myBusB

howFar Next (Next (Next (Next (Start))))

1 + howFar Next (Next (Next (Start)))

2 + howFar Next (Next (Start))

3 + howFar Next (Start)

4 + howFar Start

5

(+) 3 5

8

 howFar :: Bus -> Int

 howFar Start = 0

 howFar (Next r) = 1 + howFar r

(Next r) parens for pattern matching

(howFar myBusC) (howFar myBusB)
unnecessary parens in function
call for readability

Haskell Overview III 34 Young Won Lim
10/11/16

Anniversary Data Type (1)

https://en.wikibooks.org/wiki/Haskell/Type_declarations

data Anniversary = Birthday String Int Int Int

 | Wedding String String Int Int Int

Birthday String Int Int Int

-- name, year, month, day

Wedding String String Int Int Int

-- spouse name 1, spouse name 2, year, month, day

Haskell Overview III 35 Young Won Lim
10/11/16

Anniversary Data Type (2)

https://en.wikibooks.org/wiki/Haskell/Type_declarations

johnSmith :: Anniversary

johnSmith = Birthday "John Smith" 1968 7 3

smithWedding :: Anniversary

smithWedding = Wedding "John Smith" "Jane Smith" 1987 3 4

anniversariesOfJohnSmith :: [Anniversary]

anniversariesOfJohnSmith = [johnSmith, smithWedding]

anniversariesOfJohnSmith =

[Birthday "John Smith" 1968 7 3, Wedding "John Smith" "Jane Smith" 1987 3 4]

Haskell Overview III 36 Young Won Lim
10/11/16

Anniversary Data Type (3)

https://en.wikibooks.org/wiki/Haskell/Type_declarations

showDate :: Int -> Int -> Int -> String

showDate y m d = show y ++ "-" ++ show m ++ "-" ++ show d

showAnniversary :: Anniversary -> String

showAnniversary (Birthday name year month day) =
 name ++ " born " ++ showDate year month day

showAnniversary (Wedding name1 name2 year month day) =
 name1 ++ " married " ++ name2 ++ " on " ++ showDate year month day

Deconstructing Types
() around the constructor name and the bound variables are mandatory

the expression inside () is not a call to the constructor function

Haskell Overview III 37 Young Won Lim
10/11/16

Anniversary Data Type (4)

https://en.wikibooks.org/wiki/Haskell/Type_declarations

type Name = String

data Anniversary =
 Birthday Name Date
 | Wedding Name Name Date

data Date = Date Int Int Int -- Year, Month, Day

johnSmith :: Anniversary
johnSmith = Birthday "John Smith" (Date 1968 7 3)

smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" (Date 1987 3 4)

type AnniversaryBook = [Anniversary]

anniversariesOfJohnSmith :: AnniversaryBook
anniversariesOfJohnSmith = [johnSmith, smithWedding]

showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" ++ show m ++ "-" ++ show d

showAnniversary :: Anniversary -> String
showAnniversary (Birthday name date) =
 name ++ " born " ++ showDate date
showAnniversary (Wedding name1 name2 date) =
 name1 ++ " married " ++ name2 ++ " on " ++ showDate date

Haskell Overview III 38 Young Won Lim
10/11/16

Polymorphic Type

types that are universally quantified in some way over all types

essentially describe families of types

(forall a) [a] is the family of types consisting of,

for every type a, the type of lists of a.

● lists of integers (e.g. [1,2,3])

● lists of characters (['a','b','c'])

● lists of lists of integers, etc.

● [2,'b'] is not a valid example

https://www.haskell.org/tutorial/goodies.html

Haskell Overview III 39 Young Won Lim
10/11/16

Subset Polymorphism

roots :: (Floating a) => (a, a, a) -> (a, a)

https://www.haskell.org/tutorial/goodies.html

Haskell Overview III 40 Young Won Lim
10/11/16

Parameterized Polymorphism

plus :: a -> a -> a,

plus :: Int -> Int -> Int,

plus :: Rat -> Rat -> Rat,

data List a = L a (List a) | Empty

listlen :: List a -> Int

listlen Empty = 0

listlen (L _ list) = 1 + listlen list

https://www.haskell.org/tutorial/goodies.html

(L _ list) pattern matching

_ : match with any element

Haskell Overview III 41 Young Won Lim
10/11/16

ExplicitForAll

Just :: a -> Maybe a

Nothing :: Maybe a

reverse :: [a] -> [a]

map :: (a -> b) -> [a] -> [b]

show :: (Show a) => a -> String

Just :: forall a. a -> Maybe a

Nothing :: forall a. Maybe a

reverse :: forall a. [a] -> [a]

map :: forall a b. (a -> b) -> [a] -> [b]

show :: forall a. (Show a) => a -> String

https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/guide-to-ghc-extensions/explicit-forall

to explicitly specify the universal quantification

in polymorphic type signatures.

Haskell Overview III 42 Young Won Lim
10/11/16

Type function X

data Either a b = Left a | Right b

isLeft (Left a) = True

isLeft (Right b) = False

type X a = Either a a

Left :: a -> Either

Right :: b -> Either

https://wiki.haskell.org/GADTs_for_dummies

Haskell Overview III 43 Young Won Lim
10/11/16

First Class Values

data Either a b = Left a | Right b

Data constructors are first class values in Haskell and actually have a type.

the type of the Left constructor of the Either data type is:

Left :: forall b a. a -> Either a b

first class values:

● may be passed to functions

● may make a list

● may be data elements of other algebraic data types

• and so forth https://wiki.haskell.org/Constructor

Haskell Overview III 44 Young Won Lim
10/11/16

Show Class

Class Show

the instances of Show are those types
that can be converted to character strings.
(information about the class)

The function show

show :: (Show a) => a -> String

https://www.haskell.org/tutorial/goodies.html

Similar to the toString() method in Java

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

