
GAS Tutorial - 7. Directives (2)

Young W. Lim

2016-03-12 Sat

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 1 / 55

Outline

1 Control related directives

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 2 / 55

Based on

�Using as�, Dean Elsner, Jay Fenlason & friends

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This �le is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the �le under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

In short, it only meaningful to add or subtract the o�sets in an address; you can only have a de�ned section in one
of the two arguments.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 3 / 55

7.1 .abort

stops the assembly immediately

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 4 / 55

7.2 .ABORT (COFF)

when producing COFF output

the same as .abort

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 5 / 55

7.4 .altmacro (1)

Enable alternate macro mode, enabling:
LOCAL name [, . . .]

generate a string replacement for each of the name arguments

replace any instances of name

The replacement string is unique in the assembly

di�erent for each separate macro expansion.

LOCAL allows you to write macros that de�ne symbols

without con�ict between separate macro expansions

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 6 / 55

7.4 .altmacro (2)

String delimiters

`string' delimit strings with single-quote characters

delimit strings with matching angle brackets

Single-character string escape

to include any single character literally in a string

pre�x the character with ` !'

Expression results as strings

%expr to evaluate expr

use the result as a string.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 7 / 55

7.7 .balign[wl] abs-expr , abs-expr , abs-expr (1)

pad the location counter to a particular storage boundary

followed by three absolute expressions

The �rst expression

alignment request in bytes

.balign 8 advances the location counter toward multiples of 8

The second expression

the �ll value to be stored in the padding bytes

the default �ll value is zero

The third expression

the maximum number of bytes that should be skipped

no skipping of bytes above the speci�ed maximum

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 8 / 55

7.7 .balign[wl] abs-expr , abs-expr , abs-expr (2)

.balignw directive

treats the �ll pattern as a two byte word value

.balignl directives

treats the �ll pattern as a four byte longword value

.balignw 4,0x368d

align to a multiple of 4

skipping two bytes with the value 0x368d

skipping 1 or 3 bytes, the �ll value is unde�ned.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 9 / 55

7.111 .title �heading �

use heading as the title

when generating assembly listings

(second line, immediately after the source �le name and page
number)

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 10 / 55

7.94 .sbttl �subheading �

use subheading as the title

when generating assembly listings.

(third line, immediately after the title line)

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 11 / 55

7.115 .version �string �

creates a .note section

places into it an ELF formatted note of type NTVERSION

The note'sname is set to string

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 12 / 55

7.86 .print string

print string on the standard output during assembly

string in double quotes.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 13 / 55

7.118 .warning �string �

Similar to the directive .error (see Section 7.47 [.error �string �],
page 52), but just emits a warning.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 14 / 55

7.46 .err

print an error message

normally, no object �le is generated

unless the `-Z' option was used

to signal an error in conditionally compiled code.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 15 / 55

7.47 .error �string �

prints with a custom error message string

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 16 / 55

7.50 .fail expression

generates an error or a warning

print a warning message (expression >= 500)

print a error message (expression < 500)

print a message including the value of expression

useful inside complex nested macros or conditional assembly

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 17 / 55

7.51 .�le (1)

Default Version

tells as that we are about to start a new logical �le

.�le string

string is the new �le name

. �lename is recognized whether quotes are used or not

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 18 / 55

7.51 .�le (2)

DWARF2 Version

assigns �lenames to the .debug_line �le name table

.�le �leno �lename

The �leno

must be a unique positive integer
index of the entry in the table

The �lename is a string literal

�lename table is shared with the .debug_info section of the
DWARF2

debugging information

the user must know the exact indices of table entries

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 19 / 55

7.62 .include ��le �

include supporting �les at speci�ed points in your source
program

control the search paths used with the `-I' command-line option

quotation marks are required around �le

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 20 / 55

7.61 .incbin ��le �[,skip [,count]]

includes �le verbatim at the current location

control the search paths used with the `-I'command-line option

quotation marks are required around �le

skip : skips a number of bytes from the start of the �le

count : indicates the maximum number of bytes to read

no data alignment

proper user alignment both before and after the incbin
directive.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 21 / 55

7.69 .line line-number

change the logical line number

an absolute argument for the next line

the next line has that logical line number

the current line has line number - 1

associated with the a.out or b.out object-code formats

as still recognizes it for COFF output

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 22 / 55

7.77 .macro (1)

.macro and .endm allow you to de�ne macros

a macro sum example that puts a sequence of numbers into
memory :

.macro sum from=0, to=5

.long \from

.if \to-\from

sum "(\from+1)",\to

.endif

.endm

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 23 / 55

7.77 .macro (2)

With that de�nition, `SUM 0,5' is equivalent to this assembly
input:

.macro sum from=0, to=5 .long 0

.long \from .long 1

.if \to-\from .long 2

sum "(\from+1)",\to .long 3

.endif .long 4

.endm .long 5

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 24 / 55

7.77 .macro (3)

.macro macname .macro macname macargs . . .

Begin the de�nition of a macro called macname

can qualify the macro argument

mandate argument (`:req')
variable argument (`:vararg')

default argument value (`=de�t')

no rede�nition is allowed

except using .purgem

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 25 / 55

7.77 .macro (4)

valid .macro examples

.macro comm

begin the de�nition of a macro called comm with no arguments

.macro plus1 p, p1

.macro plus1 p p1

either statement is ok. (comma or just blank)

de�nition of a macro called plus1

two arguments p and p1

within the de�nition, \p and \p1 to evaluate the arguments

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 26 / 55

7.77 .macro (5)

.macro reserve_str p1=0 p2

macro called reserve_str with two arguments

p1 has a default value 0

p2 has no default value

reserve_str a ,b

\p1 has a and \p2 has b

reserve_str , b

\p1 has 0 and \p2 has b

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 27 / 55

7.77 .macro (6)

.macro m p1:req, p2=0, p3:vararg

a macro called m, with at least three arguments

p1 is mandatory

p2 is optional and has default value 0

p3 is assigned all the remaining arguments

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 28 / 55

7.77 .macro (7)

When you call a macro, you can specify the argument values either

by position

by keyword.

For example,

sum 9,17

sum to=17, from=9

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 29 / 55

7.77 .macro (8)

special meanings to certain characters can cause problems

the colon (:) is generally permitted to be part of a symbol
name

no way to di�erentiate with a label

.macro label l

\l:

.endm

might not work as expected

invoking `label foo' might not create a label called `foo'

instead just insert the text \l: into the assembler source,

probably generating an error about an unrecognised identi�er.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 30 / 55

7.77 .macro (9)

similar problems might occur with the period character (`.')

often allowed inside opcode names (and hence identi�er names)

.macro opcode base length

\base.\length

.endm

invoking it as opcode store l will not create a store.l

instruction

instead generate some kind of error as the assembler tries to
interpret the text \base.\length

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 31 / 55

7.77 .macro (10)

There are several possible ways around this problem: Insert white
space

white space characters

.macro label l

\textbackslash{}l :

.endm

\() for separation

macro opcode base length

\base\().\length

.endm

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 32 / 55

7.77 .macro (11)

Use the alternate macro syntax mode

& used as a separator

.altmacro

.macro label l

l&:

.endm

Note: this problem of correctly identifying string parameters to
pseudo ops also applies to the identi�ers used in .irp and .irpc

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 33 / 55

7.77 .macro (12)

.endm mark the end of a macro de�nition.

.exitm exit early from the current macro de�nition.
\@

pseudo variable representing current number of macros

can copy that number to your output with \@

only within a macro de�nition.

LOCAL name [, ...]

only available if you select

alternate macro syntax with

--alternate

.altmacro

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 34 / 55

7.48 .exitm

exit early from the current macro de�nition

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 35 / 55

7.89 .purgem name

unde�ne the macro name

later uses of the string will not be expanded

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 36 / 55

7.65 .irp symbol, values . . . (1)

evaluate a sequence of statements assigning di�erent values to
symbol

statement sequence is de�ned by

.irp directive

.endr directive

this statement sequence is iterated over �values�

during each iteration, �is replaced with one of iterating �values�

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 37 / 55

7.65 .irp symbol, values . . . (2)

For example, assembling

.irp param,1,2,3

move d\param,sp@-

.endr

is equivalent to assembling

move d1,sp@-

move d2,sp@-

move d3,sp@-

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 38 / 55

7.66 .irpc symbol ,value (1)

similar to .irp symbol, values

instead values, one value of a character string

in the statement sequence, �is replaced with a character in a
string

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 39 / 55

7.66 .irpc symbol ,value (2)

For example, assembling

.irpc param,123

move d\param,sp@-

.endr

is equivalent to assembling

move d1,sp@-

move d2,sp@-

move d3,sp@-

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 40 / 55

7.60 .if absolute expression (1)

.if marks the beginning of a section of code which is only

considered part of the source program being assembled

if the argument (which must be an absolute expression) is
non-zero

the end of the conditional section of code must be marked by
.endif

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 41 / 55

7.60 .if absolute expression (2)

.ifdef symbol

if the speci�ed symbol has been de�ned

a symbol which has been referenced but not yet de�ned is
considered to be unde�ned.

.ifndef symbol .ifnotdef symbol

if the speci�ed symbol has not been de�ned

both spelling variants are equivalent

a symbol which has been referenced but not yet de�ned is
considered to be unde�ned

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 42 / 55

7.60 .if absolute expression (3)

.ifb text

if the operand is blank (empty)

.ifnb text

Like .ifb, but the sense of the test is reversed

if the operand is non-blank (non-empty).

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 43 / 55

7.60 .if absolute expression (4)

.ifc string1 ,string2

if the two strings are the same

optionally quoted with single quotes

when not quoted

the �rst string stops at the �rst comma
the second string stops at the end of the line

strings which contain whitespace should be quoted

case sensitive

.ifnc string1 ,string2 .

Like .ifc, but the sense of the test is reversed

if the two strings are not the same.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 44 / 55

7.60 .if absolute expression (5)

.ifeq absolute expression

if the argument is zero

.ifne absolute expression

if the argument is not equal to zero

equivalent to .if

.ifeqs string1, string2

another form of .ifc

the strings must be quoted using double quotes

.ifnes string1 ,string2

Like .ifeqs, but the sense of the test is reversed

if the two strings are not the same.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 45 / 55

7.60 .if absolute expression (6)

.ifge absolute expression

if the argument is greater than or equal to zero

.ifgt absolute expression

if the argument is greater than zero

.i�e absolute expression

if the argument is less than or equal to zero.

.i�t absolute expression

if the argument is less than zero.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 46 / 55

7.37 .else

part of the as support for conditional assembly

marks the beginning of a section of code to be assembled if
the condition for the preceding .if was false.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 47 / 55

7.38 .elseif

part of the as support for conditional assembly

shorthand for beginning a new .if block that would otherwise
�ll the entire .else section

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 48 / 55

7.42 .endif

part of the as support for conditional assembly

marks the end of a block of code that is only assembled
conditionally

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 49 / 55

7.32 .def name

begin de�ning debugging information for a symbol name

the de�nition extends until the .endef directive is encountered.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 50 / 55

7.40 .endef

�ags the end of a symbol de�nition begun with .def.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 51 / 55

7.54 .func name [,label]

.func emits debugging information to denote function name, and is
ignored unless the �le is assembled with debugging enabled. Only
`�gstabs[+]' is currently supported. label is the entry point of the
function and if omitted name prepended with the `leading char' is
used. `leading char' is usually _ or nothing, depending on the
target. All functions are currently de�ned to have void return type.
The function must be terminated with .endfunc.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 52 / 55

7.41 .endfunc

marks the end of a function speci�ed with .func.

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 53 / 55

7.39 .end

marks the end of the assembly �le

does not process anything in the �le past the .end directive

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 54 / 55

TTTT

Young W. Lim GAS Tutorial - 7. Directives (2) 2016-03-12 Sat 55 / 55

	Control related directives

