
Young Won Lim
6/5/17

GHCi: Getting started (1A)

Young Won Lim
6/5/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Haskell Overview 3 Young Won Lim
6/5/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Haskell Overview 4 Young Won Lim
6/5/17

Interpreter GHCi

young@MNTSys-BB1 ~ $ ghci

GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

Prelude> "hello, world!"

"hello, world!"

Prelude> putStrLn "hello, world!"

hello, world!

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 5 Young Won Lim
6/5/17

Function

Prelude> let fac n = if n == 0 then 1 else n * fac (n-1)

Prelude> fac 5

120

Prelude> fac 2

2

Prelude> fac 3

6

Prelude> fac 4

24

Prelude>

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 6 Young Won Lim
6/5/17

Compiler GHC

young@MNTSys-BB1 ~ $ ghc -o hello hello.hs

[1 of 1] Compiling Main (hello.hs, hello.o)

Linking hello ...

young@MNTSys-BB1 ~ $./hello

hello, world!

young@MNTSys-BB1 ~ $ cat hello.hs

main = putStrLn "hello, world!"

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 7 Young Won Lim
6/5/17

Layout

main = do putStrLn "Type an integer : ?"

 x <- readLn

 if even x

 then putStrLn "even number"

 else putStrLn "odd number"

t.hs

ghc t.hs

./t

the first non-space character after do.

every line that starts in the same column
as that p is in the do block

If you indent more, it is the nested block in do

If you indent less, it is an end of the do block.

ghc –o run t.hs

./t

Haskell Overview 8 Young Won Lim
6/5/17

Multi-line in GHCi

ghci multi-line

Prelude> :{

Prelude| main = do { putStrLn "Type an integer: "; x<-readLn;

Prelude| if even x then putStrLn "even" else putStrLn "odd"; }

Prelude| :}

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 9 Young Won Lim
6/5/17

Types

 Int an integer with at least 30 bits of precision.

 Integer an integer with unlimited precision.

 Float a single precision floating point number.

 Double a double precision floating point number.

 Rational a fraction type, with no rounding error.

Types and Class Types start with capital letters

Variables start with lower case letters

Declaring a type :: type

Asking which type :t something

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 10 Young Won Lim
6/5/17

Type Classes

Prelude> 3 :: Int
3
Prelude> 3 :: Float
3.0
Prelude> 4 :: Double
4.0
Prelude> 2 :: Integer
2
Prelude> :t 3
3 :: Num a => a 3 can be used as any numeric type
Prelude> :t 2.0
2.0 :: Fractional a => a 2.0 can be used as any fractional type
Prelude> :t gcd 15 20
gcd 15 20 :: Integral a => a gcd 15 20 can be used as any integral type
Prelude> :t True
True :: Bool
Prelude> :t 'A'
'A' :: Char

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

the types of t must be Num type class

the types of t must be Fractional type class

the types of t must be Integral type class

class constraint

(Num t) =>

(Fractional t) =>

(Integral t) =>

the type t is constrained by the context

(Num t), (Fractional t), (Integral t)

Haskell Overview 11 Young Won Lim
6/5/17

Type Classes

 Int

 Integer

 Float

 Double

 Rational

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Instances of
Integral type

Instances of
Fractional type

Instances of
Num type

Type Class : a set of type (instances)

 Int

 Integer

 Float

 Double

 Rational

Instances of
Num type

Instances of
Integral type

Instances of
Fractional type

Haskell Overview 12 Young Won Lim
6/5/17

Lists and Tuples

Lists multiple values of the same type

Strings lists of characters.

Tuples a fixed number of values, which can have different types.

The : operator appends an item to the beginning of a list

 Zip : two lists into a list of tuples.

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 13 Young Won Lim
6/5/17

Functions

[1 .. 10]

map (+ 2) [1 .. 10]

filter (> 2) [1 .. 10]

fst (1, 2)

snd (1, 2)

map fst [(1, 2), (3, 4), (5, 6)]

fst (1, 2, 3)

snd (1, 2, 3)

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

[1,2,3,4,5,6,7,8,9,10]

[3,4,5,6,7,8,9,10,11,12]

[3,4,5,6,7,8,9,10]

1

2

 [1,3,5]

Haskell Overview 14 Young Won Lim
6/5/17

Functions

my_sum m n = m+n

main = do putStrLn "Give two numbers: "

 x <- readLn

 y <- readLn

 print (my_sum x y)

Give two numbers:

10

20

30

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Haskell Overview 15 Young Won Lim
6/5/17

Convenient Syntax

secsToWeeks secs =let perMinute = 60

 perHour = 60 * perMinute

 perDay = 24 * perHour

 perWeek = 7 * perDay

 in secs / perWeek

classify age = case age of 0 -> "newborn"

 1 -> "infant"

 2 -> "toddler"

 _ -> "senior citizen"

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Young Won Lim
6/5/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

