
Young Won Lim
7/21/18

Functor Lifting (2B)

Young Won Lim
7/21/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Functor Lifting (2B) 3 Young Won Lim
7/21/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor Lifting (2B) 4 Young Won Lim
7/21/18

Lifting

Lifting is a concept which allows you

to transform a function into a corresponding function

within another (usually more general) setting.

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 5 Young Won Lim
7/21/18

fmap : lifting operation

fn :: a -> b

fmap fn :: f a -> f b

fmap :: Functor f => (a -> b) -> f a -> f b

fmap :: Functor f => (a -> b) -> (f a -> f b)

notice that fmap is a lifting operation

fmap transforms a function fn :: a -> b

between simple types a and b

into a function fmap fn :: f a -> f b

between pairs of these types f a and f b

https://wiki.haskell.org/Lifting

fn
a b

fmap
f a f b

function fmap

type constructor f
function fn

fmap fn
f a f b

Functor Lifting (2B) 6 Young Won Lim
7/21/18

Functor Pair

consider a Pair functor

instances not allowed for

type Pair a = (a, a)

define a new datatype by using data Pair a

data Pair a = Pair a a deriving Show

instance Functor Pair where

 fmap fn (Pair x y) = Pair (fn x) (fn y)

Pair : type constructor

Pair : data constructor

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 7 Young Won Lim
7/21/18

Functor Lifting

data Pair a = Pair a a deriving Show

instance Functor Pair where

 fmap fn (Pair x y) = Pair (fn x) (fn y)

lift :: (a -> b) -> Pair a -> Pair b

lift = fmap

A functor can only lift functions of exactly one variable, (a->b)
but we want to lift other functions, too: (a->b->c), (a->b->c->d),

lift0 :: a -> Pair a
lift0 x = Pair x x

lift2 :: (a -> b -> r) -> (Pair a -> Pair b -> Pair r)
lift2 fn (Pair x1 x2) (Pair y1 y2) = Pair (fn x1 y1) (fn x2 y2)

https://wiki.haskell.org/Lifting

fn
a b

fmap
Pair a Pair b

function fmap

type constructor Pair
function fn

Functor Lifting (2B) 8 Young Won Lim
7/21/18

Functor Lifting Example

data Pair a = Pair a a deriving Show

instance Functor Pair where

 fmap fn (Pair x y) = Pair (fn x) (fn y)

plus2 :: Pair Int -> Pair Int

plus2 = lift (+2)

plus2 (Pair 2 3) ---> Pair 4 5

plus :: Pair Int -> Pair Int -> Pair Int
plus = lift2 (+)

plus (Pair 1 2) (Pair 3 4) --->
Pair 4 6

https://wiki.haskell.org/Lifting

lift (+2)
Pair a Pair b

plus2
Pair a Pair b

Not all functions between Pair a and Pair b
can be constructed as a lifted function
\(x, _) -> (x, 0)
can’t be a lifting function

Functor Lifting (2B) 9 Young Won Lim
7/21/18

Functor Lifting

https://wiki.haskell.org/Lifting

lift fn
f a f b

lift2 fn

f a f c
f b

lift0
 a f a

fn
a b

lift
f a f b

lift2

f a f c
f b

fn

 a c
 b

Functor Lifting (2B) 10 Young Won Lim
7/21/18

Liftable Lifting

class Functor f => Liftable f where
 zipL :: f a -> f b -> f (a, b)
 zeroL :: f ()

liftL :: Liftable f => (a -> b) -> (f a -> f b)
liftL = fmap

liftL2 :: Liftable f => (a -> b -> c) -> (f a -> f b -> f c)
liftL2 fn x y = fmap (uncurry fn) $ zipL x y

liftL3 :: Liftable f => (a -> b -> c -> d) -> (f a -> f b -> f c -> f d)
liftL3 fn x y z = fmap (uncurry . uncurry $ fn) $ zipL (zipL x y) z

liftL0 :: Liftable f => a -> f a
liftL0 x = fmap (const x) zeroL

https://wiki.haskell.org/Lifting

fn :: a -> b -> c -> d
x :: f a
y :: f b
z :: f c

fn :: a -> b -> c
x :: f a
y :: f b

Functor Lifting (2B) 11 Young Won Lim
7/21/18

Liftable Lifting – liftL2

liftL2 :: Liftable f => (a -> b -> c) -> (f a -> f b -> f c)
liftL2 fn x y = fmap (uncurry fn) $ zipL x y

x :: f a
y :: f b
zipL :: f a -> f b -> f (a, b)

zipL x y :: zipL f a f b
zipL x y :: f (a, b)

fn :: a -> b -> c

uncurry fn :: (a, b) -> c

fmap (uncurry fn) $ zipL x y :: fmap (uncurry fn) f (a, b)
fmap (uncurry fn) $ zipL x y :: fmap ((a, b) -> c) f (a, b)
fmap (uncurry fn) $ zipL x y :: f c

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 12 Young Won Lim
7/21/18

Liftable Lifting – liftL3

liftL3 :: Liftable f => (a -> b -> c -> d) -> (f a -> f b -> f c -> f d)
liftL3 fn x y z = fmap (uncurry . uncurry $ fn) $ zipL (zipL x y) z

x :: f a
y :: f b
zipL :: f a -> f b -> f (a, b)

zipL x y :: zipL f a f b
zipL x y :: f (a, b)

fn :: a -> b -> c -> d

uncurry $ fn :: (a, b) -> c -> d
uncurry . uncurry $ fn :: (a, b, c) -> d

fmap (uncurry . uncurry $ fn) $ zipL (zipL x y) z :: fmap (uncurry . uncurry $ fn) f (a, b, c)
fmap (uncurry . uncurry $ fn) $ zipL (zipL x y) z :: fmap ((a, b, c) -> d) f (a, b, c)
fmap (uncurry . uncurry $ fn) $ zipL (zipL x y) z :: f d

https://wiki.haskell.org/Lifting

z :: f c

zipL (zipL x y) z :: zipL f (a, b) f c
zipL (zipL x y) z :: f (a, b, c)

Functor Lifting (2B) 13 Young Won Lim
7/21/18

fn
 d

Liftable Lifting

https://wiki.haskell.org/Lifting

liftL fn
f a f b

liftL2 fn

f a f c
f b

liftL0
 a f a

fn
a b

liftL
f a f b

liftL2
f a f c
f b

fn
 a c
 b

liftL3 fn

f a
f df b

f c

 a

 b
 c

liftL3

f a
f df b

f c

Functor Lifting (2B) 14 Young Won Lim
7/21/18

Applicative Lifting appL

class Functor f => Liftable f where
 zipL :: f a -> f b -> f (a, b)
 zeroL :: f ()

liftL2 :: Liftable f => (a -> b -> c) -> (f a -> f b -> f c)

fn :: a -> b -> c ($) :: (a -> b) -> a -> b
x :: f a ff :: f (a -> b)
y :: f b fx :: f a

liftL2 ($) :: Liftable f => ((a -> b) -> a -> b) -> (f (a -> b) -> f a -> f b)

 ($) ff fx :: ((a -> b) -> a -> b) -> f (a -> b) -> f a
liftL2 ($) ff fx :: f b

appL ff fx = liftL2 ff fx

appL :: Liftable f => f (a -> b) -> f a -> f b
appL = liftL2 ($)

https://wiki.haskell.org/Lifting

ff :: f (a -> b)

fx :: f a

f $ x = f x

Functor Lifting (2B) 15 Young Won Lim
7/21/18

Applicative Lifting

class Functor f => Liftable f where
 zipL :: f a -> f b -> f (a, b)
 zeroL :: f ()

appL :: Liftable f => f (a -> b) -> f a -> f b
appL = liftL2 ($)

appL ff x = liftL2 ($) ff fx

liftL2 :: Liftable f => ((a -> b) -> a -> b) -> f (a -> b) -> f a -> f b

https://wiki.haskell.org/Lifting

f b

b

f fn

appL

fn

pure

f a

a

f bappL f fnf a

bfna

($) :: (a -> b) -> a -> b
ff :: f (a -> b) fn :: (a -> b)
fx :: f a x :: a

Haskell Overview 16 Young Won Lim
7/21/18

Applicative Lifting using liftL2

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f bappL f fnf a

bfna

class Functor f => Liftable f where
 zipL :: f a -> f b -> f (a, b)
 zeroL :: f ()

liftL2 :: Liftable f => (a -> b -> c) -> (f a -> f b -> f c)
liftL2 fn x y = fmap (uncurry fn) $ zipL x y

appL :: Liftable f => f (a -> b) -> f a -> f b
appL = liftL2 ($)

liftL2
f a f c
f b

fn
 a c
 b

liftL2
f (a->b) f b

f a

($)
 (a->b) b

 a

Haskell Overview 17 Young Won Lim
7/21/18

Applicative Lifting

f b
appL f fn

f a

b
fn

a

liftL2 ($)

f (a->b) f b
f a

liftL2
f (a->b) f b

f a

($)
 (a->b) b

 a

appL f
f a f b

liftL2
f (a->b) f b

f a

($)
 (a->b) b

 a

f b
appL f fn

f a

b
fn

a

Functor Lifting (2B) 18 Young Won Lim
7/21/18

Monad Lifting

return :: (Monad m) => a1 -> m a1
liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r
liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 19 Young Won Lim
7/21/18

Monad Lifting

https://wiki.haskell.org/Lifting

liftM fn
m a m b

liftM2 fn

m a m c
m b

return
 a m a

fn
a b

liftM
m a m b

liftM2

m a m c
m b

fn

 a c
 b

return :: (Monad m) => a -> m b
liftM :: (Monad m) => (a -> b) -> m a -> m b
liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c

Functor Lifting (2B) 20 Young Won Lim
7/21/18

Monad Lifting Examples

plus :: [Int] -> [Int] -> [Int]
plus = liftM2 (+)

plus [1,2,3] [3,6,9] --->
[4,7,10, 5,8,11, 6,9,12]

plus [1..] [] --->
| (i.e., keeps on calculating forever)

plus [] [1..] --->
[]

example the list monad (MonadList).
It performs a nondeterministic calculation,
returning all possible results.

https://wiki.haskell.org/Lifting

liftM2 just turns a deterministic function
into a nondeterministic one:

Functor Lifting (2B) 21 Young Won Lim
7/21/18

Using liftM2 of Monad

Every Monad can be made
an instance of Liftable

{-# OPTIONS -fglasgow-exts #-}
{-# LANGUAGE AllowUndecidableInstances #-}
import Control.Monad

instance (Functor m, Monad m) => Liftable m where
 zipL = liftM2 (\x y -> (x,y))
 zeroL = return ()

https://wiki.haskell.org/Lifting

liftM2 fn

m a m c

m b

liftM2

m a m c

m b

fn

 a c

 b

mf :: a b -> (a,b)
mf = (\x y -> (x,y))

Functor Lifting (2B) 22 Young Won Lim
7/21/18

Instance of Liftable using liftM2

class Functor f => Liftable f where
 zipL :: f a -> f b -> f (a, b)
 zeroL :: f ()

liftL2 :: Liftable f => (a -> b -> c) -> (f a -> f b -> f c)
liftL2 fn x y = fmap (uncurry fn) $ zipL x y

liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c

(\x y -> (x,y)) :: a -> b -> c x :: a, y :: b, (x,y) :: c
liftM2 (\x y -> (x,y)) :: m a -> m b -> m c
liftM2 (\x y -> (x,y)) :: f a -> f b -> f c

instance (Functor m, Monad m) => Liftable m where
 zipL = liftM2 (\x y -> (x,y))
 zeroL = return ()

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 23 Young Won Lim
7/21/18

Monad Lifting

https://wiki.haskell.org/Lifting

liftM2 mf

m a m c

m b

liftM2

m a m c

m b

fn

a c

b

lift2 fn

f a f c

f b

lift2

f a f c

f b

fn

 a c

 b

liftL2 fn

l a l c
l b

liftL2
l a l c
l b

fn
 a c
 b

Functor f Monad m Liftable l

Functor Lifting (2B) 24 Young Won Lim
7/21/18

Typeclass Definitions of Functor, Applicative, and Monad

class Functor f where
 fmap :: (a -> b) -> f a -> f b

 (<$) :: a -> f b -> f a
 (<$) = fmap . Const

class Functor f => Applicative f where
 pure :: a -> f a
 infixl 4 <*>, *>, <*
 (<*>) :: f (a -> b) -> f a -> f b

 (*>) :: f a -> f b -> f b
 a1 *> a2 = (id <$ a1) <*> a2

 (<*) :: f a -> f b -> f a
 (<*) = liftA2 const

https://wiki.haskell.org/Typeclassopedia

class Applicative m => Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
 (>>) :: m a -> m b -> m b
 m >> n = m >>= _ -> n

 fail :: String -> m a

Haskell Overview 25 Young Won Lim
7/21/18

Functor <$> related operators

Functor map <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$) :: Functor f => a -> f b -> f a

($>) :: Functor f => f a -> b -> f b

https://haskell-lang.org/tutorial/operators

replace b in f b

with a … f a

replace a in f a

with b … f b

<$

$>

The <$> operator is just a synonym

for the fmap function

in the Functor typeclass.

fmap generalizes map for lists

to other data types : Maybe, IO, Map.

Haskell Overview 26 Young Won Lim
7/21/18

Applicative <*> related operators

Applicative function application <*>

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

https://haskell-lang.org/tutorial/operators

<*

*>

overwrites

<*> is an operator that applies

a wrapped function

to a wrapped value.

<*> is a part of the

Applicative typeclass,

<*>is very often used as follows

foo <$> bar <*> baz

faa <*> bar <*> baz

overwrites

Haskell Overview 27 Young Won Lim
7/21/18

Monadic binding / composition operators

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(=<<) :: Monad m => (a -> m b) -> m a -> m b

(>>) :: Monad m => m a -> m b -> m b

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

https://haskell-lang.org/tutorial/operators

Functor Lifting (2B) 28 Young Won Lim
7/21/18

Monad Transformers

Using several monads at once
a function could use both I/O and Maybe exception handling

While a type like IO (Maybe a) would work just fine,
it would force us to do pattern matching
within IO do-blocks to extract values,
something that the Maybe monad was meant to spare us from.

monad transformers:
special types that allow us to roll two monads
into a single one that shares the behavior of both.

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 29 Young Won Lim
7/21/18

Monad Transformer MaybeT

define a monad transformer that gives the IO monad
some characteristics of the Maybe monad;
we will call it MaybeT

monad transformers have a "T" appended
to the name of the monad whose characteristics they provide.

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 30 Young Won Lim
7/21/18

Multi-level Monad Lifting

Lifting becomes especially interesting
when there are more levels you can lift between.

Control.Monad.Trans defines a class

class MonadTrans t where
 lift :: Monad m => m a -> t m a

-- lifts a value from the inner monad m
-- to the transformed monad t m
-- could be called lift0

https://wiki.haskell.org/Lifting

Functor Lifting (2B) 31 Young Won Lim
7/21/18

MonadTrans Lifting

class MonadTrans t where
 lift :: Monad m => m a -> t m a

the class of monad transformers

minimal complete definition : lift method

this method lifts a computation
from the argument monad m a
to the constructed monad t m a

http://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-Class.html

lift
m a t m a

argument
monad

constructed
monad

base
monad
comp

combined
monad
comp

lift

Functor Lifting (2B) 32 Young Won Lim
7/21/18

liftM : lifting a function

liftM converts a plain function into one that acts within m.
By lifting, we refer to bringing something into something else
— in this case, a function into a monad.

liftM allows us to apply a plain function to a monadic value
without needing do-blocks or other such tricks:

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

bind notation

monadicValue >>=
 \x -> return (f x)

liftM fn
m a m b

do notation

do x <- monadicValue
 return (f x)

liftM operation

liftM f monadicValue

Functor Lifting (2B) 33 Young Won Lim
7/21/18

lift : lifting monad computations

The lift function of the MonadTrans class
plays an analogous role of liftM
when working with monad transformers.

It brings (promotes) base monad computations
to the combined monad computations.

lift enables us to easily insert base monad computations
as part of a larger computation in the combined monad.

lift is the single method of the MonadTrans class,
found in Control.Monad.Trans.Class.

All monad transformers are instances of MonadTrans,
and so lift is available for them all.

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

lift
m a t m a

argument
monad

constructed
monad

base
monad
comp

combined
monad
comp

lift

Functor Lifting (2B) 34 Young Won Lim
7/21/18

MonadTrans Lifting Laws

class MonadTrans t where
 lift :: Monad m => m a -> t m a

the class of monad transformers.

instances should satisfy the following laws,
which state that lift is a monad transformation:

 lift . return = return

 lift (m >>= f) = lift m >>= (lift . f)

http://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-Class.html

lift
m a t m a

argument
monad

constructed
monad

base
monad
comp

combined
monad
comp

lift

Functor Lifting (2B) 35 Young Won Lim
7/21/18

MonadIO Lifting

class (Monad m) => MonadIO m where
 liftIO :: IO a -> m a

There is a variant of lift specific
to IO operations, called liftIO,

the single method of the MonadIO class
in Control.Monad.IO.Class.

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

class MonadTrans t where
 lift :: Monad m => m a -> t m a

lift
m a t m a

base
monad

combined
monad

lift

liftIO
IO a m a

Functor Lifting (2B) 36 Young Won Lim
7/21/18

MonadIO Lifting

class (Monad m) => MonadIO m where
 liftIO :: IO a -> m a

when multiple transformers are stacked
into a single combined monad.

In such cases, IO is always the innermost monad,
and so we typically need more than one lift
to bring IO values to the top of the stack.

liftIO is defined for the instances in a way
that allows us to bring an IO value from any depth
while writing the function a single time.

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

class MonadTrans t where
 lift :: Monad m => m a -> t m a

Functor Lifting (2B) 37 Young Won Lim
7/21/18

MonadTrans Instance Example

instance MonadTrans MaybeT where
 lift m = MaybeT (liftM Just m)

Implementing the MaybeT transformer:

We begin with a monadic value
of the base monad (Just m).
With liftM (fmap would have worked just as fine),
we slip the precursor monad (through the Just constructor) underneath,
so that we go from m a to m (Maybe a)).

Finally, we wrap things up with the MaybeT constructor.
Note that the liftM here works in the base monad (m a),
just like the do-block wrapped by MaybeT
in the implementation of (>>=)
we saw early on was in the base monad.

https://en.wikibooks.org/wiki/Haskell/Monad_transformers

class MonadTrans t where
 lift :: Monad m => m a -> t m a

liftM fn
m a m b

Functor Lifting (2B) 38 Young Won Lim
7/21/18

Arrow Lifting

Until now, we have only considered
lifting from functions to other functions.
John Hughes' arrows
are a generalization of computation
that aren't functions anymore.

An arrow a b c stands for a computation
which transforms values of type b
to values of type c.

The basic primitive arr, aka pure,

arr :: (Arrow a) => (b -> c) -> a b c

https://wiki.haskell.org/Lifting

Young Won Lim
7/21/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

