
Young Won Lim
8/2/18

Functor Overview (1A)

Young Won Lim
8/2/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Functor Overview (1A) 3 Young Won Lim
8/2/18

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor Overview (1A) 4 Young Won Lim
8/2/18

Typeclasses and Instances

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 a function definition

 (==) :: a -> a -> Bool - a type declaration

 x == y = not (x /= y)

 a function type

 (==) :: a -> a -> Bool - a type declaration

 A function definition can be overloaded

such behavior is defined by

● function definition

● function type declaration only

Functor Overview (1A) 5 Young Won Lim
8/2/18

Typeclasses and Type

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

No relation with classes in Java or C++

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type is an instance of a typeclass implies

the function types declared by the typeclass
are defined (implemented) in the instance

so that we can use the functions
that the typeclass defines with that type

Functor Overview (1A) 6 Young Won Lim
8/2/18

A Concrete Type and a Type Constructor

a : a concrete type

Maybe : not a concrete type

: a type constructor that takes one parameter

 in order to produces a concrete type.

Maybe a : a concrete type

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor Overview (1A) 7 Young Won Lim
8/2/18

Maybe

Maybe : Algebraic Data Type (ADT)

widely used because it effectively extends a type Integer
into a new context in which it has an extra value (Nothing)

that represents a lack of value

can check for that extra value (Nothing)
before accessing the possible Integer

good for debugging

many other languages have this sort of "no-value" value via NULL references.

the Maybe functor handle this no-value more effectively.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor Overview (1A) 8 Young Won Lim
8/2/18

Functor typeclass – “mapped over”

the Functor typeclass is basically

for things that can be mapped over

ex) mapping over lists

the list type is a Functor typeclass

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

List Functor

Maybe Functor

Functor Overview (1A) 9 Young Won Lim
8/2/18

Functor typeclass – instances

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

class Functor f

instance Functor Maybe
instance Functor []

func
a b

fmap
f a f b

function fmap

type constructor f
function func

f is a type constructor taking one type parameter

Maybe instance of the Functor typeclass

[] instance of the Functor typeclass

Functor Overview (1A) 10 Young Won Lim
8/2/18

Functor typeclass – fmap defined

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

The Functor typeclass

defines the function fmap

without a default implementation

the type variable f

f is not a concrete type (f alone cannot hold a value)

f is a type constructor taking one type parameter

Maybe Int : a concrete type (a concrete type can hold a value)

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

function fmap

type constructor f
function func

Functor Overview (1A) 11 Young Won Lim
8/2/18

Function map & fmap

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

fmap takes
● a function from one type to another (a -> b)
● a Functor f applied with one type (f a)

fmap returns
● a Functor f applied with another type (f b)

 map :: (a -> b) -> [a] -> [b]

map takes
● a function from one type to another (* 2)
● take a list of one type [1, 2, 3]
● returns a list of another type [2, 4, 6]

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

(a -> b) -> f a -> f b

function type type

func

Functor Overview (1A) 12 Young Won Lim
8/2/18

List : an instance of the Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

map is just a fmap that works only on lists

a list is an instance of the Functor typeclass.

 instance Functor [] where

 fmap = map

f : a type constructor that takes one type

[] : a type constructor that takes one type

[a] : a concrete type ([Int], [String] or [[String]])

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

map
[a] [b]

function fmap

type constructor f
function func

Functor Overview (1A) 13 Young Won Lim
8/2/18

List Examples

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

 instance Functor [] where

 fmap = map

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 map :: (a -> b) -> [a] -> [b]

 ghci> fmap (*2) [1..3]

 [2,4,6]

 ghci> map (*2) [1..3]

 [2,4,6]

*21 2

map[1,2,3] [2,4,6]

function fmap

type constructor f
function func

map

[]
(*2)

Functor Overview (1A) 14 Young Won Lim
8/2/18

Maybe : an instance of the Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f a

f b

f

Maybe a

Maybe b

Maybe

 (a -> b) func

 instance : implementing fmap

func :: (a -> b)

Functor Overview (1A) 15 Young Won Lim
8/2/18

f : a type variable (parameter)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

f : a type variable

f Maybe

Functor Overview (1A) 16 Young Won Lim
8/2/18

f : a type constructor

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f : a type constructor taking one type parameter

f a

f b

Maybe a

Maybe b

type

f Maybe typetype

type

type

type
Maybe af a

f a Maybe a typetype

f Int Maybe Int typetype

Functor Overview (1A) 17 Young Won Lim
8/2/18

f and Maybe

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

Maybe : an instance of Functor typeclass

f : a type variable

f : a type constructor taking one type parameter

Functor Overview (1A) 18 Young Won Lim
8/2/18

Maybe : an argument to fmap, together with a

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap func (Just x) = Just (func x)

fmap func Nothing = Nothing

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

f Maybe

func f
func :: a -> b

f :: a -> b

class Functor f

instance Functor Maybe

Functor Overview (1A) 19 Young Won Lim
8/2/18

Maybe : an argument to fmap, together with a

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap :: (a -> b) -> f a -> f b fmap :: (a -> b) -> Maybe a -> Maybe b

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

Functor Overview (1A) 20 Young Won Lim
8/2/18

The distinct two f’s

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fa b

fmapf a f b the type constructor f

the argument function f

different !

f :: (a->b)

 Functor f

Functor Overview (1A) 21 Young Won Lim
8/2/18

An argument f to fmap vs. Functor f

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

f an argument function to fmap

f is different from the type constructor f

 f : a -> b func : a -> b

 f

func

 f

f : a type variable

f : a type constructor taking one type parameter

Functor Overview (1A) 22 Young Won Lim
8/2/18

Maybe Functor (Instance)

fa b

fmapf a f b

fa b

fmapMaybe a Maybe b

funca b

fmapMaybe a Maybe b

Typeclass

Instance

class Functor f

instance Functor Maybe
instance Functor []

Functor Overview (1A) 23 Young Won Lim
8/2/18

Maybe Functor Examples (1)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f
a b

fmap
f a f b

*2200 400

fmapJust 200 Just 400

 ghci> fmap (*2) (Just 200)

 Just 400

 ghci> fmap (*2) Nothing

 Nothing

 f

 f

Functor Overview (1A) 24 Young Won Lim
8/2/18

Maybe Functor Examples (2)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

 (++ "BBB")

fmap

 ghci> fmap (++ "BBB") (Just "AAA")

 Just "AAABBB"

 ghci> fmap (++ "BBB") Nothing

 Nothing

"AAA"

Just "AAA"

"AAABBB"

Just "AAABBB"

 f

 f

Functor Overview (1A) 25 Young Won Lim
8/2/18

Maybe as a functor

Functor typeclass:
● transforming one type to another Int → Maybe Int
● transforming operations of one type to those of another (*2) → fmap (*2)

Maybe a is an instance of a functor type class Functor instance

Functor provides fmap method
maps functions of the base type (such as Integer) (*2) 5
to functions of the lifted type (such as Maybe Integer). fmap (*2) Maybe 5

 (*2) :: Int -> Int base type function

fmap (*2) :: Maybe Int -> Maybe Int lifted type function

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor Overview (1A) 26 Young Won Lim
8/2/18

Maybe as a functor

A function f transformed with fmap
can work on a Maybe value

pattern matching is used

case maybeVal of
 Nothing -> Nothing -- there is nothing, so just return Nothing
 Just val -> Just (f val) -- there is a value, so apply the function to it

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

Functor Overview (1A) 27 Young Won Lim
8/2/18

Maybe as a functor

A function f transformed with fmap
cab work on a Maybe value

 base type function lifted type function

 f :: Integer -> Integer fmap f :: Maybe Integer -> Maybe Integer

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Integer f Integer Maybe Integer fmap f Maybe Integer

Functor Overview (1A) 28 Young Won Lim
8/2/18

Maybe as a functor

A function f transformed with fmap
to work on a Maybe value

 f :: Integer -> Integer

fmap f :: Maybe Integer -> Maybe Integer

m_x :: Maybe Integer

fmap f m_x :: Maybe Integer

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor Overview (1A) 29 Young Won Lim
8/2/18

Transforming operations

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

f
Int Int

fmap f
Maybe Int Maybe Int

fmap f
F Int F Int

f
a b

fmap
F a F b

Functor Overview (1A) 30 Young Won Lim
8/2/18

fmap func

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap func
Maybe a Maybe b

fmap func Just x fmap func Just x

Functor Overview (1A) 31 Young Won Lim
8/2/18

Apply a function to lifted type values

m_x :: Maybe Integer (Just 101, Nothing, …)

f :: Int -> Int

fmap f m_x

to apply the function f directly to the Maybe Integer
without concerning whether it is Nothing or not

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

m_x :: Maybe Integer
 f a

Function f
Functor f

fmap f

map (apply)

Functor Overview (1A) 32 Young Won Lim
8/2/18

Maybe as a functor

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fmap f m_x

Function f of (a -> b)

lifted type

A Functor f applied with a type a or b

f a or f b (f is not the function f) f a
m_x :: Maybe Integer

Function f
Functor f

lifted function

Functor Overview (1A) 33 Young Won Lim
8/2/18

Maybe as a functor

If there a Maybe Int value m_x

and an Int -> Int function f,

fmap f m_x can be used

to apply the function f directly

to the Maybe Int value m_x

without worrying if m_x actually

has a value or not.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

f . g . h x

fmap f . fmap g . fmap h m_x

when a whole chain of

lifted Integer -> Integer functions

is applied to Maybe Int values,

an explicit checking and handling for Nothing

can be deferred until the last stage.

Just a

Nothing

Just b

Nothing

Just c

Nothing
m_x

h g f

A chain of lifted Integer -> Integer functions

handle

Functor Overview (1A) 34 Young Won Lim
8/2/18

Maybe instances

Maybe is

● an instance of Eq and Ord (as a base type)

● an instance of Functor

● an instance of Monad

https://wiki.haskell.org/Maybe

Functor Overview (1A) 35 Young Won Lim
8/2/18

Maybe class

The Maybe type definition

 data Maybe a = Just a | Nothing
 deriving (Eq, Ord)

Maybe is
an instance of Eq and Ord (as a base type)

https://wiki.haskell.org/Maybe

Functor Overview (1A) 36 Young Won Lim
8/2/18

Maybe Functor

For Functor, the fmap
moves f inside the Just constructor
is identity on the Nothing constructor.

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

https://wiki.haskell.org/Maybe

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

Functor Overview (1A) 37 Young Won Lim
8/2/18

maybe library function

maybe :: b -> (a->b) -> Maybe a -> b

The maybe function takes
a default value (b),
a function (a->b), and
a Maybe value (Maybe a).

If the Maybe value is Nothing,
the function returns the default value.

Otherwise, it applies the function
to the value inside the Just and returns the result.

>>> maybe False odd (Just 3)
True

>>> maybe False odd Nothing
False

https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-
Maybe.html

Functor Overview (1A) 38 Young Won Lim
8/2/18

IO Functor

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fa b

fmapIO a IO b

action fresult

(a -> b) -> IO a -> IO b

f action

f result

Functor Overview (1A) 39 Young Won Lim
8/2/18

IO Functor Example

 main = do line <- getLine

 let line' = reverse line

 putStrLn $ "You said " ++ line' ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line' ++ " backwards!"

 main = do line <- fmap reverse getLine

 putStrLn $ "You said " ++ line ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line ++ " backwards!"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 fmap f action = do

fmap reverse getLine = do

 result <- getLine

 return (reverse result)

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

getLine :: IO String

result :: String

reverse :: [a] -> [b]

Functor Overview (1A) 40 Young Won Lim
8/2/18

Functor Typeclass Examples (5)

 ghci> :t fmap (*2)

 fmap (*2) :: (Num a, Functor f) => f a -> f a

 ghci> :t fmap (replicate 3)

 fmap (replicate 3) :: (Functor f) => f a -> f [a]

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(*2)a a

fmapf a f a

(replicate 3)a [a]

fmapf a f [a]

Functor Overview (1A) 41 Young Won Lim
8/2/18

Functor Typeclass Examples (6)

 ghci> fmap (replicate 3) [1,2,3,4]

 [[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

 ghci> fmap (replicate 3) (Just 4)

 Just [4,4,4]

 ghci> fmap (replicate 3) (Right "blah")

 Right ["blah","blah","blah"]

 ghci> fmap (replicate 3) Nothing

 Nothing

 ghci> fmap (replicate 3) (Left "foo")

 Left "foo"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor Overview (1A) 42 Young Won Lim
8/2/18

Functor Laws

fmap id = id

id :: a -> a

id x = x

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

 instance Functor Maybe where

 fmap id (Just x) = Just (id x)

 fmap id Nothing = Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ida a

fmapF a F a

idF a F a

Just x Just x

Nothing Nothing

Functor Overview (1A) 43 Young Won Lim
8/2/18

Functor Typeclass

 ghci> fmap id (Just 3)

 Just 3

 ghci> id (Just 3)

 Just 3

 ghci> fmap id [1..5]

 [1,2,3,4,5]

 ghci> id [1..5]

 [1,2,3,4,5]

 ghci> fmap id []

 []

 ghci> fmap id Nothing

 Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor Overview (1A) 44 Young Won Lim
8/2/18

Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

af . ga

fmapF a

ga

fmap F a

a

F a

ga

fmapF a

fa

fmap

f

F a

a a

F a

Functor Overview (1A) 45 Young Won Lim
8/2/18

Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fmap (f . g) Nothing = Nothing

fmap f (fmap g Nothing) = Nothing

fmap (f . g) (Just x) = Just ((f . g) x) = Just (f (g x))

fmap f (fmap g (Just x)) = fmap f (Just (g x)) = Just (f (g x))

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Young Won Lim
8/2/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

