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Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Typeclasses and Instances

Typeclasses are like interfaces

defines some behavior 
comparing for equality 
comparing for ordering 
enumeration

Instances of that typeclass
 types possessing such behavior 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

    a function definition

       (==) :: a -> a -> Bool - a type declaration 

        x == y = not (x /= y)  

    a function type 

       (==) :: a -> a -> Bool - a type declaration 

     A function definition can be overloaded 

such behavior is defined by 

● function definition 

● function type declaration only 
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Typeclasses and Type

Typeclasses are like interfaces

defines some behavior 
comparing for equality 
comparing for ordering 
enumeration

Instances of that typeclass
 types possessing such behavior 

No relation with classes in Java or C++

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type is an instance of a typeclass implies

the function types declared by the typeclass 
are defined (implemented) in the instance

so that we can use the functions
that the typeclass defines with that type
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A Concrete Type and a Type Constructor 

a : a concrete type 

Maybe : not a concrete type 

: a type constructor that takes one parameter 

  in order to produces a concrete type.

Maybe a : a concrete type 

 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
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Maybe 

Maybe :  Algebraic Data Type (ADT)

widely used because it effectively extends a type Integer 
into a new context in which it has an extra value (Nothing) 

that represents a lack of value

can check for that extra value (Nothing) 
before accessing the possible Integer

good for debugging 

many other languages have this sort of "no-value" value via NULL references. 

the Maybe functor handle this no-value more effectively.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Functor typeclass – “mapped over”

the Functor typeclass is basically 

for things that can be mapped over

ex) mapping over lists

the list type is a Functor typeclass

    

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

List Functor

Maybe Functor
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Functor typeclass – instances

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

class Functor f

instance Functor Maybe 
instance Functor [ ] 

func
a b

fmap
f a f b

function fmap

type constructor  f
function func 

f is a type constructor taking one type parameter

Maybe instance of the Functor typeclass

[ ] instance of the Functor typeclass
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Functor typeclass – fmap defined 

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

The Functor typeclass 

defines the function fmap 

without a default implementation

the type variable f 

f is not a concrete type (f alone cannot hold a value) 

f is a type constructor taking one type parameter

Maybe Int : a concrete type (a concrete type can hold a value) 

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

function fmap

type constructor  f
function func 
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Function map & fmap 

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

fmap takes 
● a function from one type to another  (a -> b)
● a Functor f applied with one type  (f a)

fmap returns 
● a Functor f applied with another type (f b)

     map :: (a -> b) -> [a] -> [b]

map takes 
● a function from one type to another (* 2) 
● take a list of one type [ 1, 2, 3 ]
● returns a list of another type [ 2, 4, 6 ] 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

(a -> b)   ->   f a   ->   f b 

function type type

func
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List : an instance of the Functor typeclass

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

     map :: (a -> b) -> [a] -> [b]

map is just a fmap that works only on lists

a list is an instance of the Functor typeclass.

    instance Functor [ ] where  

        fmap = map  

f : a type constructor that takes one type 

[ ] : a type constructor that takes one type 

[a] : a concrete type  ([Int], [String] or [[String]] )

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

map
[ a ] [ b ]

function fmap

type constructor  f
function func 
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List Examples

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

     map :: (a -> b) -> [a] -> [b]

    instance Functor [ ] where  

        fmap = map  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

   map :: (a -> b) -> [a] -> [b]  

    ghci> fmap (*2) [1..3]  

    [2,4,6]  

    ghci> map (*2) [1..3]  

    [2,4,6]  

*21 2

map[1,2,3] [2,4,6]

function fmap

type constructor  f
function func 

map

[ ]
(*2)
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Maybe : an instance of the Functor typeclass

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f a

f b

f 

Maybe a

Maybe b

Maybe 

 (a -> b) func

    instance : implementing fmap 

func :: (a -> b) 
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f : a type variable (parameter) 

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f   a f   b

func
a b

fmap
Maybe   a Maybe   b

f : a type variable 

f Maybe 
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f : a type constructor

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f : a type constructor taking one type parameter

f a

f b

Maybe a

Maybe b

type

f Maybe typetype

type

type

type
Maybe   af   a

f a Maybe a typetype

f Int Maybe Int typetype
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f and Maybe

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

Maybe : an instance of Functor typeclass

f : a type variable 

f : a type constructor taking one type parameter
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Maybe : an argument to fmap, together with a 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap func (Just x) = Just (func  x)  

fmap func Nothing = Nothing 

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap f (Just x) = Just (f  x)  

fmap f Nothing = Nothing 

f Maybe

func f
func :: a -> b

f :: a -> b

class Functor f 

instance Functor Maybe   
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Maybe : an argument to fmap, together with a 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap :: (a -> b) -> f a -> f b fmap :: (a -> b) -> Maybe a -> Maybe b

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  
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The distinct two f’s

    class Functor  f  where  

        fmap :: (a -> b) ->  f  a ->  f  b  

    instance Functor Maybe where  

        fmap  f  (Just x) = Just ( f  x)  

        fmap  f  Nothing = Nothing  

fa b

fmapf a f b the type constructor f 

the argument function f

different !

f :: (a->b) 

 Functor  f
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An argument f to fmap vs. Functor f

    class Functor  f  where  

        fmap :: (a -> b) ->  f  a ->  f  b  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

    instance Functor Maybe where  

        fmap  f  (Just x) = Just ( f  x)  

        fmap  f  Nothing = Nothing  

f an argument function to fmap

f is different from the type constructor f 

 f  : a -> b  func : a -> b

 f 

func

 f 

f : a type variable 

f : a type constructor taking one type parameter
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Maybe Functor (Instance)

fa b

fmapf a f b

fa b

fmapMaybe a Maybe b

funca b

fmapMaybe a Maybe b

Typeclass

Instance 

class Functor f

instance Functor Maybe 
instance Functor [ ] 
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Maybe Functor Examples (1)

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

f
a b

fmap
f a f b

*2200 400

fmapJust 200 Just 400

    ghci> fmap (*2) (Just 200)  

    Just 400  

    ghci> fmap (*2) Nothing  

    Nothing  

 f 

 f 
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Maybe Functor Examples (2)

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

 (++ "BBB")

fmap

    ghci> fmap (++ "BBB") (Just "AAA")  

    Just "AAABBB"  

    ghci> fmap (++ "BBB") Nothing  

    Nothing  

"AAA"

Just "AAA"

"AAABBB"

Just "AAABBB"

 f 

 f 
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Maybe as a functor

Functor typeclass:
● transforming one type to another Int → Maybe Int
● transforming operations of one type to those of another (*2) → fmap (*2)

Maybe a is an instance of a functor type class Functor instance

Functor provides fmap method  
maps functions of the base type (such as Integer) (*2)    5
to functions of the lifted type (such as Maybe Integer). fmap (*2) Maybe 5

 (*2) ::      Int ->         Int base type function

fmap (*2) :: Maybe Int -> Maybe Int lifted type function

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Maybe as a functor

A function f transformed with fmap 
can work on a Maybe value

pattern matching is used

case maybeVal of
  Nothing  -> Nothing         -- there is nothing, so just return Nothing
  Just val -> Just (f val)       -- there is a value, so apply the function to it

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  
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Maybe as a functor

A function f transformed with fmap 
cab work on a Maybe value

     base type  function                      lifted type function

 f :: Integer -> Integer fmap  f :: Maybe Integer -> Maybe Integer 

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Integer f Integer Maybe Integer fmap  f Maybe Integer



Functor Overview (1A) 28 Young Won Lim
8/2/18

Maybe as a functor

A function f transformed with fmap 
to work on a Maybe value

 f   :: Integer -> Integer 

fmap  f  :: Maybe Integer -> Maybe Integer 

m_x  :: Maybe Integer 

fmap  f    m_x  :: Maybe Integer 

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Transforming operations 

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor provides fmap method  
maps functions of the base type (such as Integer) 
to functions of the lifted type (such as Maybe Integer). 

f
Int Int

fmap f
Maybe Int Maybe Int

fmap f
F Int F Int

f
a b

fmap
F a F b



Functor Overview (1A) 30 Young Won Lim
8/2/18

fmap func

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap func (Just x)  = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

func
a b

fmap
f a f b

func
a b

fmap
Maybe a Maybe b

fmap func
Maybe a Maybe b

fmap   func  Just x fmap func  Just x 
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Apply a function to lifted type values 

m_x :: Maybe Integer ( Just 101, Nothing, … ) 

f ::  Int -> Int 

fmap f     m_x 

to apply the function f directly to the Maybe Integer 
without concerning whether it is Nothing or not

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

m_x :: Maybe  Integer
    f       a

Function  f
Functor   f

fmap f

map (apply) 
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Maybe as a functor

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

fmap   f   m_x 

Function f of (a -> b)

lifted type 

A Functor f applied with a type a or b

f a  or f b   (f is not the function f)   f       a
m_x :: Maybe  Integer

Function  f
Functor   f

lifted function 
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Maybe as a functor

If there a Maybe Int value m_x 

and an Int -> Int function f, 

fmap f m_x can be used 

to apply the function f directly 

to the Maybe Int value m_x

without worrying if m_x actually 

has a value or not. 

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

f . g . h x 

fmap f . fmap g . fmap h   m_x

when a whole chain of 

lifted Integer -> Integer functions 

is applied to Maybe Int values,  

an explicit checking and handling for Nothing 

can be deferred until the last stage.

Just a

Nothing

Just b

Nothing

Just c

Nothing
m_x

h g f 

A chain of lifted Integer -> Integer functions

handle
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Maybe instances 

Maybe is  

● an instance of Eq and Ord (as a base type)

● an instance of Functor

● an instance of Monad

https://wiki.haskell.org/Maybe
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Maybe class 

The Maybe type definition

 
 data Maybe a = Just a | Nothing
     deriving (Eq, Ord)

Maybe is  
an instance of Eq and Ord (as a base type)

https://wiki.haskell.org/Maybe
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Maybe Functor

For Functor, the fmap 
moves f inside the Just constructor 
is identity on the Nothing constructor.

    class Functor f where  

        fmap :: (a -> b) -> f a -> f b  

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

https://wiki.haskell.org/Maybe

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  
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maybe library function

maybe :: b -> (a->b) -> Maybe a -> b

The maybe function takes 
a default value (b), 
a function (a->b), and 
a Maybe value (Maybe a). 

If the Maybe value is Nothing, 
the function returns the default value. 

Otherwise, it applies the function 
to the value inside the Just and returns the result.

>>> maybe False odd (Just 3)
True

>>> maybe False odd Nothing
False

https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-
Maybe.html



Functor Overview (1A) 38 Young Won Lim
8/2/18

IO Functor 

    instance Functor IO where  

        fmap f action = do  

            result <- action  

            return (f result)  

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fa b

fmapIO a IO b

action fresult

(a -> b)   ->   IO a   ->   IO b 

f action

f result
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IO Functor Example 

    main = do line <- getLine   

              let line' = reverse line  

              putStrLn $ "You said " ++ line' ++ " backwards!"  

              putStrLn $ "Yes, you really said" ++ line' ++ " backwards!"  

    main = do line <- fmap reverse getLine  

              putStrLn $ "You said " ++ line ++ " backwards!"  

              putStrLn $ "Yes, you really said" ++ line ++ " backwards!"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

        fmap f      action  = do

          

fmap reverse getLine = do  

            result <- getLine  

            return (reverse result)  

    instance Functor IO where  

        fmap f action = do  

            result <- action  

            return (f result)  

getLine :: IO String

result :: String

reverse :: [a] -> [b]
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Functor Typeclass Examples (5)

    ghci> :t fmap (*2)  

    fmap (*2) :: (Num a, Functor f) => f a -> f a  

    ghci> :t fmap (replicate 3)  

    fmap (replicate 3) :: (Functor f) => f a -> f [a]  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(*2)a a

fmapf a f a

(replicate 3)a [ a ]

fmapf a f [ a ]
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Functor Typeclass Examples (6)

    ghci> fmap (replicate 3) [1,2,3,4]  

    [[1,1,1],[2,2,2],[3,3,3],[4,4,4]] 

 

    ghci> fmap (replicate 3) (Just 4)  

    Just [4,4,4]  

    ghci> fmap (replicate 3) (Right "blah")  

    Right ["blah","blah","blah"]  

    ghci> fmap (replicate 3) Nothing  

    Nothing  

    ghci> fmap (replicate 3) (Left "foo")  

    Left "foo"  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Functor Laws

fmap id = id

id :: a -> a 

id    x = x

    instance Functor Maybe where  

        fmap func (Just x) = Just (func  x)  

        fmap func Nothing = Nothing  

 

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

    instance Functor Maybe where  

        fmap id (Just x) = Just (id x)  

        fmap id Nothing = Nothing  

 

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ida a

fmapF a F a

idF a F a

Just x Just x

Nothing Nothing
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Functor Typeclass

    ghci> fmap id (Just 3)  

    Just 3  

    ghci> id (Just 3)  

    Just 3  

    ghci> fmap id [1..5]  

    [1,2,3,4,5]  

    ghci> id [1..5]  

    [1,2,3,4,5]  

    ghci> fmap id []  

    []  

    ghci> fmap id Nothing  

    Nothing  

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

af . ga

fmapF a

ga

fmap F a

a

F a

ga

fmapF a

fa

fmap

f

F a

a a

F a
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Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

    instance Functor Maybe where  

        fmap f (Just x) = Just (f x)  

        fmap f Nothing = Nothing  

fmap (f . g) Nothing = Nothing

fmap f (fmap g Nothing) = Nothing

fmap (f . g) (Just x) = Just ((f . g) x) = Just (f (g x))

fmap f (fmap g (Just x)) = fmap f (Just (g x)) = Just (f (g x))

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
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