Fourier Analysis Overview (0B)

- CTES: Continuous Time
- CTFT: Continuous Time
- DTFS: Discrete Time Fourier Series
- DTFT: Discrete Time
- DFT: Discrete

Fourier Series Fourier Transform

- **Fourier Transform**
- **Fourier Transform**

Copyright (c) 2009 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 12/9/16

Fourier Analysis Methods – Frequency View

Fourier Analysis Methods – Time View

Fourier Analysis Overview (0B)

Fourier Analysis Methods

Normalized Discrete Frequency

Normalized Continuous Frequency

Time and Frequency Domain Resolutions

Normalized Discrete Frequency

Normalized Continuous Frequency

Fourier Analysis Overview (0B)

Time Domain Resolutions

Normalized Discrete Frequency

Normalized Continuous Frequency

Frequency Domain Resoltuions

Normalized Discrete Frequency

Normalized Continuous Frequency

Discrete Time and Periodic Frequency

Normalized Discrete Frequency

Normalized Continuous Frequency

Fourier Analysis Overview (0B)

Discrete Time

Periodic Time and Discrete Frequency

Discrete Frequency

Normalized Discrete Frequency

Discrete Time Resolution

 T_{s}

Discrete Frequency Resolutions ω_0 , $\hat{\omega}_0$

Discrete Frequency

Normalized Discrete Frequency

Normalized Frequency

Normalized Discrete Frequency

Normalized Continuous Frequency

Fourier Analysis Overview (0B)

Discrete Time

Normalized by $1/T_s$

CTFT pair of an impulse train

Sampling

Replication

Sampling and Replicating

Fourier Analysis Overview (0B)

Normalization

Fourier Analysis Overview (0B)

Sampling Period and the Number of Samples

Frequency Replication and Resolution (1)

sampling period T_s : \sim replication period ω_1 , ω_2 :

$$T_{1} > T_{2}$$

$$\omega_{1} = \frac{2\pi}{T_{1}} < \omega_{2} = \frac{2\pi}{T_{2}}$$
$$\hat{\omega}_{1} = 2\pi = \hat{\omega}_{2} = 2\pi$$
$$\hat{\omega}_{1} = \omega_{1}T_{1} = \hat{\omega}_{2} = \omega_{2}T_{2}$$

Fourier An	alysis
Overview	(0B)

coarse

Young Won Lim 12/9/16

fine

Frequency Replication and Resolution (2)

replication frequency

frequency resolutions

5A Spectrum Representation

Sampling Period and Replication Period

$T_1 \& T_2$ periods, $\omega_1 \& \omega_2$ replication frequencies

5A Spectrum Representation

$T_1 \& T_2$ periods, $\omega_{01} \& \omega_{02}$ frequency resolutions

5A Spectrum Representation

Replication Frequency

Fourier Analysis Overview (0B)

Normalized Replication Frequencies

Frequency Resolution

Fourier Analysis Overview (0B)

Normalized Frequency Resolutions

Normalized $\omega_0 \& \omega_s$

Types of Fourier Transforms

Overview (0B)

29

12/9/16

1. CTFS

CT Continuous Time

FS Discrete Frequency

2. DTFS / DFT

FS Discrete Frequency (Normalized)

3. CTFT

4. DTFT

FT Continuous Frequency (Normalized)

Fourier Transform Types

Continuous Time Fourier Series

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \qquad (\Rightarrow x(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{+jk\omega_{0}t}$$

Discrete Time Fourier Series

$$\gamma[\mathbf{k}] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\mathbf{k}\hat{\omega}_0 \mathbf{n}} \qquad \Longleftrightarrow \qquad x[\mathbf{n}] = \sum_{k=0}^{N-1} \gamma[\mathbf{k}] e^{+jk\hat{\omega}_0 \mathbf{n}}$$

Continuous Time Fourier <u>Transform</u>

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad \Longleftrightarrow x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Discrete Time Fourier Transform

$$X(j\hat{\omega}) = \sum_{n = -\infty}^{+\infty} x[n] e^{-j\hat{\omega}n} \qquad \longleftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(j\hat{\omega}) e^{+j\hat{\omega}n} d\hat{\omega}$$

5A Spectrum Representation

Multiplication with an Impulse Train

 $x(t) \cdot p(t)$ Multiplication with a dense impulse train

Convolution with an Impulse Train

x(t)*p(t) Multiplication with a sparse impulse train

Convolution & Multiplication Properties

$$x(t) * y(t) \qquad \longleftrightarrow \qquad X(j\omega) \cdot Y(j\omega)$$
$$x(t) \cdot y(t) \qquad \longleftrightarrow \qquad \frac{1}{2\pi} X(j\omega) * Y(j\omega)$$

$$x(t) * y(t) \qquad \longleftrightarrow \qquad X(f) \cdot Y(f)$$
$$x(t) \cdot y(t) \qquad \longleftrightarrow \qquad X(f) * Y(f)$$

Multiplication & Convolution

Convolution & Multiplication

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] M.J. Roberts, Fundamentals of Signals and Systems
- [4] S.J. Orfanidis, Introduction to Signal Processing
- [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings