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PL: A Model

A model or a possible world:

Every atomic proposition is assigned a value T or F

The set of all these assignments constitutes 
A model or a possible world

All possible worlds (assignments) are permissible

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

T  T T  T
T  F

T  T
T  F
F  T

T  T
T  F
F  T
F  F

Every atomic proposition : A, B

models

24 = 16
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PL: Interpretation

Semantics : the meaning of formulas

Truth values are assigned to the atoms of a formula 

in order to evaluate the truth value of the formula 

An interpretation for A is a total function I
A
: P

A
 → {T, F}

that assigns the truth values T or F to every atom in P
A

A  F ∈ a formula

P
A
 the set of atoms in A

https://en.wikipedia.org/wiki/Syntax_(logic)#Syntactic_consequence_within_a_formal_system

A B 

T T

T F

F T

F F

Interpretation I
1

Interpretation I
2

Interpretation I
3

Interpretation I
4
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PL: Material Implication vs Logical implication  

Given two propositions A and B,
If A ⇒ B is a tautology
It is said that A logically implies B (A ⇛ B)

Material Implication A ⇒ B (not a tautology)
Logical Implication A ⇛ B (a tautology)

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

A∧B ⇛ A

tautology
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PL: Entailment

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

any model that makes A∧B true 

also makes A true     A∧B  A⊨

No case : True ⇒ False 

Entailment A∧B  A⊨ , or A∧B ⇛ A

if A→B holds in every model then A  B⊨ , 
and conversely if A  B⊨  then A→B is true in every model
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PL: Validity of Arguments (1)

An argument form is valid if and only if 

whenever the premises are all true, then conclusion is true. 

An argument is valid if its argument form is valid.

http://math.stackexchange.com/questions/281208/what-is-the-difference-between-a-sound-argument-and-a-valid-argument

premises : true conclusion : trueIf then

false true

false false

true falseIf then never
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PL: Validity of Arguments (2)

A deductive argument is said to be valid if and only if 

it takes a form that makes it impossible 
for the premises to be true and the conclusion nevertheless to be false. 

Otherwise, a deductive argument is said to be invalid.
for the premises to be true and the conclusion is false. 

http://www.iep.utm.edu/val-snd/

true falseIf then never
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PL: Soundness of Arguments

An argument is sound if and only if 

it is valid and all its premises are true.

http://math.stackexchange.com/questions/281208/what-is-the-difference-between-a-sound-argument-and-a-valid-argument

premises : true conclusion : trueIf then

false true

false false

true falseIf then never

All premises : true
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PL: Validity and Soundness of Arguments (3)

http://www.iep.utm.edu/val-snd/

A B A⇒B A∧(A⇒B) A∧(A⇒B)⇒B

T T    T T T
T F    F F T
F T    T F T
F F    T  F T

sound

valid

A B A⇒B A∧(A⇒B) A∧(A⇒B)⇒B

T T    T T T
T F    F F T
F T    T F T
F F    T  F T

If premises : true then never conclusion : false

Always premises : true therefore  conclusion : true
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Interpretation

an interpretation

(a) an entity in D is assigned to each of the constant symbols.
Normally, every entity is assigned to a constant symbol.

(b) for each function, 
an entity is assigned to each possible input of entities to the function

(c) the predicate ‘True’ is always assigned the value T
The predicate ‘False’ is always assigned the value F

(d) for every other predicate, 
the value T or F is assigned 
to each possible input of entities to the predicate 
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Formulas and Sentences

An formula 
● A atomic formula
● The operator ¬ followed by a formula
● Two formulas separated by ∧, ∨, ⇒, ⇔
● A quantifier following by a variable followed by a formula

A sentence
● A formula with no free variables

∀x love(x,y) : free variable y : not a sentence
∀x tall(x) : no free variable  : a sentence

free variables
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Satisfiability of a sentence 

If a sentence φ evaluates to True 
under a given interpretation M, 
one says that M satisfies φ; 

this is denoted M ⊨ φ 

A sentence is satisfiable 
if there is some interpretation 
under which it is True.
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Satisfiability of formulas with free variables 
is more complicated, 
because an interpretation on its own 
does not determine the truth value of such a formula. 

The most common convention is that 
a formula with free variables is said 
to be satisfied by an interpretation 
if the formula remains true 
regardless which individuals 
from the domain of discourse 
are assigned to its free variables. 

This has the same effect as 
saying that a formula is satisfied 
if and only if its universal closure is satisfied.

Satisfiability of a formula  

https://en.wikipedia.org/wiki/First-order_logic
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Validity of a formula 

A formula is logically valid (or simply valid) 

if it is valid in every interpretation, or 

if it is satisfied by every interpretation

These formulas play a role similar to 
tautologies in propositional logic.
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Valid formula examples

A formula is valid 
if it is satisfied by every interpretation

Every tautology is a valid formula 

A valid sentence: human(John)  ¬∨ human(John)

A valid sentence: x∃  ( human(x)  ¬∨ human(x) )

A valid formula: loves(John, y)  ¬∨ loves(John, y)

True  regardless of which individual 
in the domain of discourse is assigned to y
This formula is true in every interpretation

free variables
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Contradiction

A sentence is a contradiction if there is no interpretation that satisfies it

∃x ( human(x) ∧ ¬human(x) )

not satisfiable under any interpretation
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Logical implication of a formula

A formula B is a logical consequence of a formula A 
if every interpretation that makes A true also makes B true. 

In this case one says that B is logically implied by A.

Given two formulas A and B, if A ⇒ B is valid:

A logically implies B   A ⇛ B 

A formula A ⇒ B is valid 
if it is satisfied by every interpretation

free variables
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Logical implication examples

Given two formulas A and B, if A ⇒ B is valid:

A logically implies B   A ⇛ B 

human(John)  ∧ ( human(John) ⇒ mortal(John) )  ⇛  mortal(John)

A B

human(x)  ∧ ( human(x) ⇒ mortal(x) )  ⇛  mortal(x)

valid if it is satisfied by every interpretation
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Logical equivalence examples

Given two formulas A and B, if A ⇔ B is valid:

A is logically equivalent B   A ≡ B 

( human(John) ⇒ mortal(John) ) ≡  ( ¬ human(John)  ∨ mortal(John) )

valid if it is satisfied by every interpretation
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Some Logical Equivalences

A and B are variables representing arbitrary predicates
A and B could have other arguments besides x

¬ x∃  A(x) ≡ x∀  ¬A(x)

¬ x∀  A(x) ≡ x∃  ¬A(x)

∃x (A(x) ∨ B(x)) ≡ x∃  A(x) ∨ x∃  B(x)

∀x (A(x) ∧ B(x)) ≡ x∀  A(x) ∧ x∀  B(x)

∀x A(x) ≡ y∀  A(y)

∃x A(x) ≡ y∃  A(y)
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Tautology 
● defined in the context of proposition
● can be extended to sentences in the first order logic 

In propositional logic the following two coincide
In first order logic, they are distinguished 

Logical Validities
Sentences that are true in every model (in every interpretation)

Tautologies
A proper subset of the first-order logical validities

Logical Validity and Tautology
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A unary relation symbols R, S, T

(((∃xRx) ¬∧ (∃xRx)) → (∀xTx)) ⇔ (( x∃ Rx) → ((¬∃xSx) → (∀xTx))) 
: logical validity in first order logic

( x∃ Rx) : A
(¬∃xSx) : B
(∀xTx) : C

((A B) → C) ∧ ⇔ (A → (B → C)) 
: a tautology in propositional logic

Logical Validity & Tautology

¬, , ∧
 ∨
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((A B) → C) ∧ ⇔ (A → (B → C)) 

A B C A B  ∧ C (A B)→C∧ A B→ C A→(B→C) 
T T T T T T T T T
T T F T F F T F F
T F T F T T T T T
T F F F F T T T T
F T T F T T F T T
F T F F F T F F T
F F T F T T F T T
F F F F F T F T T

Logical Validity & Tautology

¬, , ∧
 ∨
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Logical Validity & Tautology

A B

C

(A B)→C∧

A B

C

B→C

A B

C

A→(B→C) 
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(∀x Rx) → ¬ ∃x ¬Rx logical validities in first order logic
A → B the corresponding propositional sentence is not a tautology

Not all logical validities are tautologies

¬, , ∧
 ∨

tautology

logical validities

(∀x Rx) → ¬ ∃x ¬Rx

(((∃xRx) ¬∧ (∃xRx)) → (∀xTx)) ⇔
(( x∃ Rx) → ((¬∃xSx) → (∀xTx))) 

((A B) → C) ∧ ⇔ 
(A → (B → C)) 

A → B

tautology

tautology
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A tautology in first order logic 

A sentence that can be obtained 
by taking a tautology of propositional logic 
and uniformly replacing each propositional variable 
by a first order formula 
(one formula per propositional variable)

A ∨ ¬ A : a tautology of propositional logic
∀x (x = x) ∨ ¬ ∀x (x = x) is a tautology in first order logic 

Tautology in first order logic 
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